Measuring Presynaptic Release Probability

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)


Chemical synapses make up the majority of synaptic connections in warm-blooded animals. Their primary purpose is to depolarize or hyperpolarize downstream neurons and this process is mediated by presynaptic neurotransmitters and postsynaptic receptors. These neurotransmitters bind to postsynaptic receptors causing pore opening and ion influx/outflux. The flow of ions alters the postsynaptic membrane potential increasing or decreasing the likelihood of action potential firing; a depolarizing potential can increase the probability that an action potential is triggered, while a hyperpolarizing potential can hold the neuron at a membrane potential below threshold (Fig. 1).

Key words

Presynaptic release machinery Probability of release Variance-mean analysis Paired-pulse ratio 


  1. 1.
    Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547CrossRefPubMedGoogle Scholar
  2. 2.
    Thomson AM, West DC, Deuchars J (1995) Properties of single axon excitatory postsynaptic potentials elicited in spiny interneurons by action potentials in pyramidal neurons in slices of rat neocortex. Neuroscience 69(3):727–738CrossRefPubMedGoogle Scholar
  3. 3.
    Thomson AM, Bannister AP (1999) Release-independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex. J Physiol 519(Pt 1):57–70CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    von Gersdorff H, Schneggenburger R, Weis S, Neher E (1997) Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J Neurosci 17(21):8137–8146Google Scholar
  5. 5.
    Sudhof TC (2012) The presynaptic active zone. Neuron 75(1):11–25CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80(3):675–690CrossRefPubMedGoogle Scholar
  7. 7.
    Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39(3):483–496CrossRefPubMedGoogle Scholar
  8. 8.
    Wu LG, Borst JG, Sakmann B (1998) R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci U S A 95(8):4720–4725CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384(6605):170–172CrossRefPubMedGoogle Scholar
  10. 10.
    Atluri PP, Regehr WG (1998) Delayed release of neurotransmitter from cerebellar granule cells. J Neurosci 18(20):8214–8227PubMedGoogle Scholar
  11. 11.
    Barrett EF, Stevens CF (1972) The kinetics of transmitter release at the frog neuromuscular junction. J Physiol 227(3):691–708CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79(4):717–727CrossRefPubMedGoogle Scholar
  13. 13.
    Goda Y, Stevens CF (1994) Two components of transmitter release at a central synapse. Proc Natl Acad Sci U S A 91(26):12942–12946CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kasai H (1999) Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 22(2):88–93CrossRefPubMedGoogle Scholar
  15. 15.
    Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23(7):305–312CrossRefPubMedGoogle Scholar
  16. 16.
    Seagar M, Leveque C, Charvin N, Marqueze B, Martin-Moutot N, Boudier JA, Boudier JL, Shoji-Kasai Y, Sato K, Takahashi M (1999) Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philos Trans R Soc Lond B Biol Sci 354(1381):289–297CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hilfiker S, Augustine GJ (1999) Regulation of synaptic vesicle fusion by protein kinase C. J Physiol 515(Pt 1):1CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Betz WJ (1970) Depression of transmitter release at the neuromuscular junction of the frog. J Physiol 206(3):629–644CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stevens CF, Wang Y (1995) Facilitation and depression at single central synapses. Neuron 14(4):795–802CrossRefPubMedGoogle Scholar
  20. 20.
    Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16(6):1197–1207CrossRefPubMedGoogle Scholar
  21. 21.
    Zucker RS (1973) Changes in the statistics of transmitter release during facilitation. J Physiol 229(3):787–810CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Balnave RJ, Gage PW (1974) On facilitation of transmitter release at the toad neuromuscular junction. J Physiol 239(3):657–675CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195(2):481–492CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J Physiol 207(3):789–801CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mallart A, Martin AR (1968) The relation between quantum content and facilitation at the neuromuscular junction of the frog. J Physiol 196(3):593–604CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McLachlan EM (1978) The statistics of transmitter release at chemical synapses. Int Rev Physiol 17:49–117PubMedGoogle Scholar
  27. 27.
    Chen C, Blitz DM, Regehr WG (2002) Contributions of receptor desensitization and saturation to plasticity at the retinogeniculate synapse. Neuron 33(5):779–788CrossRefPubMedGoogle Scholar
  28. 28.
    Clements JD, Silver RA (2000) Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci 23(3):105–113CrossRefPubMedGoogle Scholar
  29. 29.
    Traynelis SF, Jaramillo F (1998) Getting the most out of noise in the central nervous system. Trends Neurosci 21(4):137–145CrossRefPubMedGoogle Scholar
  30. 30.
    Suska A, Lee BR, Huang YH, Dong Y, Schluter OM (2013) Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci U S A 110(2):713–718CrossRefPubMedGoogle Scholar
  31. 31.
    Kuno M (1964) Quantal components of excitatory synaptic potentials in spinal motoneurones. J Physiol 175:81–99CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Silver RA (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J Neurosci Methods 130(2):127–141CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations