Extracellular and Intracellular Recordings

  • Nicholas GrazianeEmail author
  • Yan Dong
Part of the Neuromethods book series (NM, volume 112)


In 1766, Luigi Galvani discovered that electrical activity drove nerve function. His discovery pioneered contemporary electrophysiology, which now consists of extracellular and intracellular approaches used to study electrical signal transfer among neurons. Each approach has advantages/disadvantages and useful applications that once understood can greatly benefit an experimenter looking to design the appropriate experiments. The purpose of this chapter is to provide the reader with core understanding for each approach focusing on in vitro applications (in vivo electrophysiology is covered in Chap.  22).

Key words

Multi-cell recording Cell-attached patch Inside-out patch Outside-out patch Sharp-electrode recordings Whole-cell patch 


  1. 1.
    Taketani M, Baudry M (2006) Advances in network electrophysiology: using multi-electrode arrays. Springer, USACrossRefGoogle Scholar
  2. 2.
    Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377(3):486–495CrossRefPubMedGoogle Scholar
  3. 3.
    Parameshwaran D, Bhalla US (2012) Summation in the hippocampal CA3-CA1 network remains robustly linear following inhibitory modulation and plasticity, but undergoes scaling and offset transformations. Front Comput Neurosci 6:71CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Plenz D, Stewart CV, Shew W, Yang H, Klaus A, Bellay T (2011). Multi-electrode array recordings of neuronal avalanches in organotypic cultures. J Vis Exp(54):2949Google Scholar
  5. 5.
    Kettenmann H, Grantyn R (1992) Practical electrophysiological methods: a guide for in vitro studies in vertebrate neurobiology. Wiley, New YorkGoogle Scholar
  6. 6.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100CrossRefPubMedGoogle Scholar
  7. 7.
    Sakmann B, Neher E (1983) Geometric parameters of pipettes and membrane patches. In: Sakmann B, Neher E (eds) Single-channel recording. Springer, USA, pp 37–51CrossRefGoogle Scholar
  8. 8.
    Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao Y, Inayat S, Dikin DA, Singer JH, Ruoff RS, Troy JB (2008) Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering. Proc Inst Mech Eng N J Nanoeng Nanosyst 222(1):1–11Google Scholar
  10. 10.
    Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116(4):449–472CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mazzanti M, DeFelice LJ (1990) Ca channel gating during cardiac action potentials. Biophys J 58(4):1059–1065CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67(5):1346–1358PubMedGoogle Scholar
  13. 13.
    Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28(36):8908–8913CrossRefPubMedGoogle Scholar
  14. 14.
    Okada Y, Fujiyama R, Miyamoto T, Sato T (2000) Comparison of a Ca(2+)-gated conductance and a second-messenger-gated conductance in rat olfactory neurons. J Exp Biol 203(Pt 3):567–573PubMedGoogle Scholar
  15. 15.
    Gjerstad J, Valen EC, Trotier D, Doving K (2003) Photolysis of caged inositol 1,4,5-trisphosphate induces action potentials in frog vomeronasal microvillar receptor neurones. Neuroscience 119(1):193–200CrossRefPubMedGoogle Scholar
  16. 16.
    Graziane NM, Yuen EY, Yan Z (2009) Dopamine D4 receptors regulate GABAA receptor trafficking via an actin/cofilin/myosin-dependent mechanism. J Biol Chem 284(13):8329–8336CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol 331:577–597CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch 411(2):204–211CrossRefPubMedGoogle Scholar
  19. 19.
    Byerly L, Moody WJ (1984) Intracellular calcium ions and calcium currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol 352:637–652CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kostyuk PG (1980) Calcium ionic channels in electrically excitable membrane. Neuroscience 5(6):945–959CrossRefPubMedGoogle Scholar
  21. 21.
    Liu Y, Dilger JP (1991) Opening rate of acetylcholine receptor channels. Biophys J 60(2):424–432CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maconochie DJ, Knight DE (1989) A method for making solution changes in the sub-millisecond range at the tip of a patch pipette. Pflugers Arch 414(5):589–596CrossRefPubMedGoogle Scholar
  23. 23.
    Fernandez JM, Fox AP, Krasne S (1984) Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells. J Physiol 356(1):565–585CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Trautmann A, Siegelbaum S (1983) The influence of membrane patch isolation on single acetylcholine-channel current in rat myotubes. In: Sakmann B, Neher E (eds) Single-channel recording. Springer, USA, pp 473–480CrossRefGoogle Scholar
  25. 25.
    Hamill OP, Sakmann B (1981) Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294(5840):462–464CrossRefPubMedGoogle Scholar
  26. 26.
    Sine SM, Steinbach JH (1984) Activation of a nicotinic acetylcholine receptor. Biophys J 45(1):175–185CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cull-Candy SG, Ogden DC (1985) Ion channels activated by L-glutamate and GABA in cultured cerebellar neurons of the rat. Proc R Soc Lond B Biol Sci 224(1236):367–373CrossRefPubMedGoogle Scholar
  28. 28.
    Gardner P, Ogden DC, Colquhoun D (1984) Conductances of single ion channels opened by nicotinic agonists are indistinguishable. Nature 309(5964):160–162CrossRefPubMedGoogle Scholar
  29. 29.
    Hamill OP, Bormann J, Sakmann B (1983) Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature 305(5937):805–808CrossRefPubMedGoogle Scholar
  30. 30.
    Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465CrossRefPubMedGoogle Scholar
  31. 31.
    Ogden D, Stanfield P (1994) Microelectrode techniques: the Plymouth workshop handbook. Patch clamp techniques for single channel and whole-cell recording. Company of Biologists, Cambridge, UKGoogle Scholar
  32. 32.
    Molleman A (2003) Basic theoretical principles. Patch clamping. Wiley, Chichester, pp 5–42Google Scholar
  33. 33.
    Windhorst U, Johansson H (1999) Modern techniques in neuroscience research: 33 tables. Springer, BerlinCrossRefGoogle Scholar
  34. 34.
    Marty A (1981) Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 291(5815):497–500CrossRefPubMedGoogle Scholar
  35. 35.
    Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305(5930):147–148CrossRefPubMedGoogle Scholar
  36. 36.
    Shuster MJ, Camardo JS, Siegelbaum SA, Kandel ER (1985) Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches. Nature 313(6001):392–395CrossRefPubMedGoogle Scholar
  37. 37.
    Ogden D (1994) Microelectrode techniques: the Plymouth Workshop handbook. Company of Biologists Limited, Cambridge, UKGoogle Scholar
  38. 38.
    Langton PD (2012) Essential guide to reading biomedical papers: recognising and interpreting best practice. Wiley, Chichester, West SussexCrossRefGoogle Scholar
  39. 39.
    Xu Z-Q (2011) Electrophysiology. In: Merighi A (ed) Neuropeptides, vol 789. Humana, New York, pp 181–189CrossRefGoogle Scholar
  40. 40.
    Brette R, Destexhe A (2012) Handbook of neural activity measurement. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. 41.
    Ling G, Gerard RW (1949) The normal membrane potential of frog sartorius fibers. J Cell Comp Physiol 34(3):383–396CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroscience DepartmentUniversity of PittsburghPittsburghUSA

Personalised recommendations