Regulated Gene Therapy

  • Ludivine Breger
  • Erika Elgstrand Wettergren
  • Luis Quintino
  • Cecilia Lundberg
Part of the Methods in Molecular Biology book series (MIMB, volume 1382)


Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.

Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

Key words

Tet-responsive Doxycycline Promoter Zinc finger-based transcription factor Destabilizing domain Trimethoprim 


  1. 1.
    Cress D. E. (2008) The need for regulatable vectors for gene therapy for Parkinson’s disease. Exp Neurol 209:30–3Google Scholar
  2. 2.
    Kordower J. H. and Olanow C. W. (2008) Regulatable promoters and gene therapy for Parkinson’s disease: is the only thing to fear, fear itself? Exp Neurol 209:34–40Google Scholar
  3. 3.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Gossen M, Freundlieb S, Bender G et al (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769CrossRefPubMedGoogle Scholar
  5. 5.
    Cunha BA (2000) Minocycline versus doxycycline in the treatment of Lyme neuroborreliosis. Clin Infect Dis 30:237–238CrossRefPubMedGoogle Scholar
  6. 6.
    Penttila O, Neuvonen PJ, Aho K et al (1974) Interaction between doxycycline and some antiepileptic drugs. Br Med J 2:470–472PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Okoye G, Zimmer J, Sung J et al (2003) Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J Neurosci 23:4164–4172PubMedGoogle Scholar
  8. 8.
    Kafri T, van Praag H, Gage FH et al (2000) Lentiviral vectors: regulated gene expression. Mol Ther 1:516–521CrossRefPubMedGoogle Scholar
  9. 9.
    Corti O, Sanchez-Capelo A, Colin P et al (1999) Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson’s disease. Proc Natl Acad Sci U S A 96:12120–12125PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Gonzalez-Zorn B, Escudero JA (2012) Ecology of antimicrobial resistance: humans, animals, food and environment. Int Microbiol 15:101–109PubMedGoogle Scholar
  11. 11.
    Naidoo J, Young D (2012) Gene regulation systems for gene therapy applications in the central nervous system. Neurol Res Int 2012:595410PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Xu F, Sternberg MR, Kottiri BJ et al (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296:964–973CrossRefPubMedGoogle Scholar
  13. 13.
    Jakobsson J, Rosenqvist N, Marild K et al (2006) Evidence for disease-regulated transgene expression in the brain with use of lentiviral vectors. J Neurosci Res 84:58–67CrossRefPubMedGoogle Scholar
  14. 14.
    Shen F, Fan Y, Su H et al (2008) Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 15:30–39PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959CrossRefPubMedGoogle Scholar
  16. 16.
    Liu Y, Figley S, Spratt SK et al (2010) An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol Dis 37:384–393CrossRefPubMedGoogle Scholar
  17. 17.
    Siddiq I, Park E, Liu E et al (2012) Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 29:2647–2659CrossRefPubMedGoogle Scholar
  18. 18.
    D’Onofrio PM, Thayapararajah M, Lysko MD et al (2011) Gene therapy for traumatic central nervous system injury and stroke using an engineered zinc finger protein that upregulates VEGF-A. J Neurotrauma 28:1863–1879CrossRefPubMedGoogle Scholar
  19. 19.
    Garriga-Canut M, Agustin-Pavon C, Herrmann F et al (2012) Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A 109:E3136–E3145PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Laganiere J, Kells AP, Lai JT et al (2010) An engineered zinc finger protein activator of the endogenous glial cell line-derived neurotrophic factor gene provides functional neuroprotection in a rat model of Parkinson’s disease. J Neurosci 30:16469–16474CrossRefPubMedGoogle Scholar
  21. 21.
    Konermann S, Brigham MD, Trevino AE et al (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476PubMedCentralPubMedGoogle Scholar
  22. 22.
    Rebar EJ, Huang Y, Hickey R et al (2002) Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 8:1427–1432CrossRefPubMedGoogle Scholar
  23. 23.
    Banaszynski LA, Chen LC, Maynard-Smith LA et al (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126:995–1004PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Iwamoto M, Bjorklund T, Lundberg C et al (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17:981–988PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Miyazaki Y, Imoto H, Chen LC et al (2012) Destabilizing domains derived from the human estrogen receptor. J Am Chem Soc 134:3942–3945PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Tu YH, Allen LV Jr, Fiorica VM et al (1989) Pharmacokinetics of trimethoprim in the rat. J Pharm Sci 78:556–560CrossRefPubMedGoogle Scholar
  27. 27.
    Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318CrossRefPubMedGoogle Scholar
  28. 28.
    Tai K, Quintino L, Isaksson C et al (2012) Destabilizing domains mediate reversible transgene expression in the brain. PLoS One 7:e46269PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Quintino L, Manfre G, Wettergren EE et al (2013) Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson’s disease. Mol Ther 21:2169–2180PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Sellmyer MA, Chen LC, Egeler EL et al (2012) Intracellular context affects levels of a chemically dependent destabilizing domain. PLoS One 7:e43297PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ludivine Breger
    • 1
  • Erika Elgstrand Wettergren
    • 1
  • Luis Quintino
    • 1
  • Cecilia Lundberg
    • 1
  1. 1.Department of Experimental Medical Sciences, CNS Gene Therapy Unit, Wallenberg Neuroscience CenterLund UniversityLundSweden

Personalised recommendations