Skip to main content

Expression of Multiple Functional RNAs or Proteins from One Viral Vector

  • Protocol
Gene Therapy for Neurological Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

In this chapter, we will cover the available design choices for enabling expression of two functional protein or RNA sequences from a single viral vector. Such vectors are very useful in the neuroscience-related field of neuronal control and modulation, e.g., using optogenetics or DREADDs, but are also desirable in applications of CRISPR/Cas9 in situ genome editing and more refined therapeutic approaches. Each approach to achieving this combined expression has its own strengths and limitations, which makes them more or less suitable for different applications. In this chapter, we describe the available alternatives and provide tips on how they can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  2. Deisseroth K, Schnitzer MJ (2013) Engineering approaches to illuminating brain structure and dynamics. Neuron 80:568–577

    Article  CAS  PubMed  Google Scholar 

  3. Giguere PM, Kroeze WK, Roth BL (2014) Tuning up the right signal: chemical and genetic approaches to study GPCR functions. Curr Opin Cell Biol 27:51–55

    Article  CAS  PubMed  Google Scholar 

  4. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Maguire AM, High KA, Auricchio A et al (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Palfi S, Gurruchaga J-M, Ralph GS et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146

    Article  CAS  PubMed  Google Scholar 

  8. Cederfjäll E, Sahin G, Kirik D et al (2012) Design of a single AAV vector for coexpression of TH and GCH1 to establish continuous DOPA synthesis in a rat model of Parkinson’s disease. Mol Ther 20:1315–1326

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sommer CA, Stadtfeld M, Murphy GJ et al (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543–549

    Article  CAS  PubMed  Google Scholar 

  10. Swiech L, Heidenreich M, Banerjee A et al (2014) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33(1):102–106

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  PubMed  Google Scholar 

  14. Ekstrand MI, Nectow AR, Knight ZA et al (2014) Molecular profiling of neurons based on connectivity. Cell 157:1230–1242

    Article  CAS  PubMed  Google Scholar 

  15. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Luke GA, de Felipe P, Lukashev A et al (2008) Occurrence, function and evolutionary origins of “2A-like” sequences in virus genomes. J Gen Virol 89:1036–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Donnelly ML, Luke G, Mehrotra A et al (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal “skip”. J Gen Virol 82:1013–1025

    Article  CAS  PubMed  Google Scholar 

  19. Shao L, Feng W, Sun Y et al (2009) Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame. Cell Res 19:296–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Szymczak AL, Workman CJ, Wang Y et al (2004) Correction of multi-gene deficiency in vivo using a single “self-cleaving” 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594

    Article  CAS  PubMed  Google Scholar 

  21. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  CAS  PubMed  Google Scholar 

  22. Amendola M, Venneri MA, Biffi A et al (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116

    Article  CAS  PubMed  Google Scholar 

  23. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fagoe ND, Eggers R, Verhaagen J et al (2014) A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons. Gene Ther 21:242–252

    Article  CAS  PubMed  Google Scholar 

  25. Chenuaud P, Larcher T, Rabinowitz JE et al (2004) Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther 9:410–418

    Article  CAS  PubMed  Google Scholar 

  26. Kügler S, Lingor P, Schöll U et al (2003) Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology 311:89–95

    Article  PubMed  Google Scholar 

  27. Manfredsson FP, Burger C, Rising AC et al (2009) Tight long-term dynamic doxycycline responsive nigrostriatal GDNF using a single rAAV vector. Mol Ther 17:1857–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Björklund T, Hall H, Breysse N et al (2009) Optimization of continuous in vivo DOPA production and studies on ectopic DA synthesis using rAAV5 vectors in Parkinsonian rats. J Neurochem 111:355–367

    Article  PubMed  Google Scholar 

  29. Levitt N, Briggs D, Gil A et al (1989) Definition of an efficient synthetic poly(A) site. Genes Dev 3:1019–1025

    Article  CAS  PubMed  Google Scholar 

  30. Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    PubMed Central  CAS  PubMed  Google Scholar 

  31. O’Malley RP, Mariano TM, Siekierka J et al (1986) A mechanism for the control of protein synthesis by adenovirus VA RNAI. Cell 44:391–400

    Article  PubMed  Google Scholar 

  32. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82:797–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Parnaudeau S, O’Neill P-K, Bolkan SS et al (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Amendola M, Giustacchini A, Gentner B et al (2013) A double-switch vector system positively regulates transgene expression by endogenous microRNA expression (miR-ON vector). Mol Ther 21:934–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Björklund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Björklund, T. (2016). Expression of Multiple Functional RNAs or Proteins from One Viral Vector. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics