Skip to main content

Altering Entry Site Preference of Lentiviral Vectors into Neuronal Cells by Pseudotyping with Envelope Glycoproteins

  • Protocol
Gene Therapy for Neurological Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

A lentiviral vector system provides a powerful strategy for gene therapy trials against a variety of neurological and neurodegenerative disorders. Pseudotyping of lentiviral vectors with different envelope glycoproteins not only confers the neurotropism to the vectors, but also alters the preference of sites of vector entry into neuronal cells. One major group of lentiviral vectors is a pseudotype with vesicular stomatitis virus glycoprotein (VSV-G) that enters preferentially cell body areas (somata/dendrites) of neurons and transduces them. Another group contains lentiviral vectors pseudotyped with fusion envelope glycoproteins composed of different sets of rabies virus glycoprotein and VSV-G segments that enter predominantly axon terminals of neurons and are transported through axons retrogradely to their cell bodies, resulting in enhanced retrograde gene transfer. This retrograde gene transfer takes a considerable advantage of delivering the transgene into neuronal cell bodies situated in regions distant from the injection site of the vectors. The rational use of these two vector groups characterized by different entry mechanisms will further extend the strategy for gene therapy of neurological and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzouz M, Kingsman SM, Mazarakis ND (2004) Lentiviral vectors for treating and modeling human CNS disorders. J Gene Med 6:951–962

    Article  CAS  PubMed  Google Scholar 

  2. Wong LF, Goodhead L, Prat C et al (2006) Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 17:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Lundberg C, Björklund T, Carlsson T et al (2008) Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr Gene Ther 8:461–473

    Article  CAS  PubMed  Google Scholar 

  4. Kordower JH, Emborg ME, Bloch J et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  5. Palfi S, Leventhal L, Chu Y et al (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22:4942–4954

    CAS  PubMed  Google Scholar 

  6. Georgievska B, Jakobsson J, Persson E et al (2004) Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 15:934–944

    Article  CAS  PubMed  Google Scholar 

  7. Lo Bianco C, Schneider BL, Bauer M et al (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:17510–17515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fjord-Larsen L, Johansen JL, Kusk P et al (2005) Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified Neurturin construct. Exp Neurol 195:49–60

    Article  CAS  PubMed  Google Scholar 

  9. Vercammen L, Van der Perren A, Vaudano E et al (2006) Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson’s disease. Mol Ther 14:716–723

    Article  CAS  PubMed  Google Scholar 

  10. McCoy MK, Ruhn KA, Martinez TN et al (2008) Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol Ther 16:1572–1579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kafri T (2004) Gene delivery by lentivirus vectors an overview. Methods Mol Biol 246:367–390

    CAS  PubMed  Google Scholar 

  12. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204

    Article  CAS  PubMed  Google Scholar 

  13. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Miyoshi H, Blömer U, Takahashi M et al (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  17. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Akkina RK, Walton RM, Chen ML et al (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70:2581–2585

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Hanawa H, Kelly PF, Nathwani AC et al (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 5:242–251

    Article  CAS  PubMed  Google Scholar 

  20. Naldini L, Blömer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  21. Naldini L, Blömer U, Gage FH et al (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93:11382–11388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Blömer U, Naldini L, Kafri T et al (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649

    PubMed Central  PubMed  Google Scholar 

  23. Mochizuki H, Schwartz JP, Tanaka K et al (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 72:8873–8883

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Kordower JH, Bloch J, Ma SY et al (1999) Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 160:1–16

    Article  CAS  PubMed  Google Scholar 

  25. Watson DJ, Kobinger GP, Passini MA et al (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5:528–537

    Article  CAS  PubMed  Google Scholar 

  26. Cannon JR, Sew T, Montero L et al (2011) Pseudotype-dependent lentiviral transduction of astrocytes or neurons in the rat substantia nigra. Exp Neurol 228:41–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gravel C, Götz R, Lorrain A et al (1997) Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med 3:765–770

    Article  CAS  PubMed  Google Scholar 

  28. Baumgartner BJ, Shine HD (1998) Permanent rescue of lesioned neonatal motoneurons and enhanced axonal regeneration by adenovirus-mediated expression of glial cell-line-derived neurotrophic factor. J Neurosci Res 54:766–777

    Article  CAS  PubMed  Google Scholar 

  29. Perrelet D, Ferri A, MacKenzie AE et al (2000) IAP family proteins delay motoneuron cell death in vivo. Eur J Neurosci 12:2059–2067

    Article  CAS  PubMed  Google Scholar 

  30. Sakamoto T, Kawazoe Y, Shen JS et al (2003) Adenoviral gene transfer of GDNF, BDNF and TGF beta 2, but not CNTF, cardiotrophin-1 or IGF1, protects injured adult motoneurons after facial nerve avulsion. J Neurosci Res 72:54–64

    Article  CAS  PubMed  Google Scholar 

  31. Barkats M, Horellou P, Colin P et al (2006) 1-methyl-4-phenylpyridinium neurotoxicity is attenuated by adenoviral gene transfer of human Cu/Zn superoxide dismutase. J Neurosci Res 83:233–242

    Article  CAS  PubMed  Google Scholar 

  32. Mazarakis ND, Azzouz M, Rohll JB et al (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10:2109–2121

    Article  CAS  PubMed  Google Scholar 

  33. Azzouz M, Ralph GS, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

    Article  CAS  PubMed  Google Scholar 

  34. Wong LF, Azzouz M, Walmsley LE et al (2004) Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther 9:101–111

    Article  CAS  PubMed  Google Scholar 

  35. Mentis GZ, Gravell M, Hamilton R et al (2006) Transduction of motor neurons and muscle fibers by intramuscular injection of HIV-1-based vectors pseudotyped with select rabies virus glycoproteins. J Neurosci Methods 157:208–217

    Article  CAS  PubMed  Google Scholar 

  36. Kato S, Inoue K, Kobayashi K et al (2007) Efficient gene transfer via retrograde transport in rodent and primate brains using a human immunodeficiency virus type 1-based vector pseudotyped with rabies virus glycoprotein. Hum Gene Ther 18:1141–1151

    Article  CAS  PubMed  Google Scholar 

  37. Federici T, Kutner R, Zhang XY et al (2009) Comparative analysis of HIV-1-based lentiviral vectors bearing lyssavirus glycoproteins for neuronal gene transfer. Genet Vaccines Ther 7:1

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kato S, Kobayashi K, Inoue K et al (2011) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206

    Article  CAS  PubMed  Google Scholar 

  39. Kato S, Kuramochi M, Kobayashi K et al (2011) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 31:17169–17179

    Article  CAS  PubMed  Google Scholar 

  40. Kato S, Kuramochi M, Takasumi K et al (2011) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523

    Article  CAS  PubMed  Google Scholar 

  41. Kato S, Kobayashi K, Kuramochi M et al (2011) Highly efficient retrograde gene transfer for genetic treatment of neurological diseases. In: Xu K (ed) Viral gene therapy, chapter 17. InTech, Rijeka, pp 371–380

    Google Scholar 

  42. Kato S, Kobayashi K, Inoue K et al (2013) Vectors for highly efficient and neuron-specific retrograde gene transfer for gene therapy of neurological diseases. In: Molina FM (ed) Gene therapy—tools and potential applications, chapter 15. InTech, Rijeka, pp 387–398

    Google Scholar 

  43. Baekelandt V, Claeys A, Eggermont K et al (2002) Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther 13:841–853

    Article  CAS  PubMed  Google Scholar 

  44. Duale H, Kasparov S, Paton JF et al (2004) Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp Physiol 90:71–78

    Article  PubMed  Google Scholar 

  45. Kitagawa R, Miyachi S, Hanawa H et al (2007) Differential characteristics of HIV-based versus SIV-based lentiviral vector systems: gene delivery to neurons and axonal transport of expressed gene. Neurosci Res 57:550–558

    Article  CAS  PubMed  Google Scholar 

  46. Englund U, Fricker-Gates RA, Lundberg C et al (2002) Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp Neurol 173:1–21

    Article  CAS  PubMed  Google Scholar 

  47. Consiglio A, Gritti A, Dolcetta D et al (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci U S A 101:14835–14840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Geraerts M, Eggermont K, Hernandez-Acosta P et al (2006) Lentiviral vectors mediate efficient and stable gene transfer in adult neural stem cells in vivo. Hum Gene Ther 17:635–650

    Article  CAS  PubMed  Google Scholar 

  49. Capowski EE, Schneider BL, Ebert AD et al (2007) Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy. J Neurosci Methods 163:338–349

    Article  CAS  PubMed  Google Scholar 

  50. Schlegel R, Tralka TS, Willingham MC et al (1983) Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 32:639–646

    Article  CAS  PubMed  Google Scholar 

  51. Sinibaldi L, Goldoni P, Seganti L et al (1985) Gangliosides in early interactions between vesicular stomatitis virus and CER cells. Microbiologica 8:355–365

    CAS  PubMed  Google Scholar 

  52. Mastromarino P, Conti C, Goldoni P et al (1987) Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J Gen Virol 68:2359–2369

    Article  CAS  PubMed  Google Scholar 

  53. Coil DA, Miller AD (2004) Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 78:10920–10926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bloor S, Maelfait J, Krumbach R et al (2010) Endoplasmic reticulum chaperone gp96 is essential for infection with vesicular stomatitis virus. Proc Natl Acad Sci U S A 107:6970–6975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kato S, Kobayashi K, Kobayashi K (2013) Dissecting circuit mechanisms by genetic manipulation of specific neural pathways. Rev Neurosci 24:1–8

    Article  PubMed  Google Scholar 

  56. De Palma M, Montini E, Santoni de Sio FR et al (2005) Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 105:2307–2315

    Article  PubMed  Google Scholar 

  57. Themis M, Waddington SN, Schmidt M et al (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 12:763–771

    Article  CAS  PubMed  Google Scholar 

  58. Montini E, Cesana D, Schmidt M et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  PubMed  Google Scholar 

  59. Prehaud C, Coulon P, LaFay F et al (1988) Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 62:1–7

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Coulon P, Ternaux JP, Flamand A et al (1998) An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro. J Virol 72:273–278

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Superti F, Seganti L, Tsiang H et al (1986) Role of phospholipids in rhabdovirus attachment to CER cells. Brief report. Arch Virol 81:321–328

    Article  Google Scholar 

  62. Hanham CA, Zhao F, Tignor GH (1993) Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor. J Virol 67:530–542

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Gastka M, Horvath J, Lentz TL (1996) Rabies virus binding to the nicotinic acetylcholine receptor α subunit demonstrated by virus overlay protein binding assay. J Gen Virol 77:2437–2440

    Article  CAS  PubMed  Google Scholar 

  64. Thoulouze MI, Lafage M, Schachner M et al (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181–7190

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Tuffereau C, Bénéjean J, Blondel D et al (1998) Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J 17:7250–7259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Albertini AA, Baquero E, Ferlin A et al (2012) Molecular and cellular aspects of rhabdovirus entry. Viruses 4:117–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Tuffereau C, Schmidt K, Langevin C et al (2007) The rabies virus glycoprotein receptor p75NTR is not essential for rabies virus infection. J Virol 81:13622–13630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Towne C, Schneider BL, Kieran D et al (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther 17:141–146

    Article  CAS  PubMed  Google Scholar 

  69. Towne C, Setola V, Schneider BL et al (2011) Neuroprotection by gene therapy targeting mutant SOD1 in individual pools of motor neurons does not translate into therapeutic benefit in fALS mice. Mol Ther 19:274–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. ElMallah MK, Falk DJ, Lane MA et al (2012) Retrograde gene delivery to hypoglossal motoneurons using adeno-associated virus serotype 9. Hum Gene Ther Methods 23:148–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Hirano M, Kato S, Kobayashi K et al (2013) Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein. PLoS One 8, e75896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kato S, Kobayashi K, Kobayashi K (2014) Improved transduction efficiency of a lentiviral vector for neuron-specific retrograde gene transfer by optimizing the junction of fusion envelope glycoprotein. J Neurosci Methods 227:151–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kobayashi, K., Kato, S., Inoue, Ki., Takada, M., Kobayashi, K. (2016). Altering Entry Site Preference of Lentiviral Vectors into Neuronal Cells by Pseudotyping with Envelope Glycoproteins. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics