Skip to main content

Altering Tropism of rAAV by Directed Evolution

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

Directed evolution represents an attractive approach to derive AAV capsid variants capable of selectively infect specific tissue or cell targets. It involves the generation of an initial library of high complexity followed by cycles of selection during which the library is progressively enriched for target-specific variants. Each selection cycle consists of the following: reconstitution of complete AAV genomes within plasmid molecules; production of virions for which each particular capsid variant is matched with the particular capsid gene encoding it; recovery of capsid gene sequences from target tissue after systemic administration. Prevalent variants are then analyzed and evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327

    Article  CAS  PubMed  Google Scholar 

  2. Perabo L, Endell J, King S et al (2006) Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J Gene Med 8:155–162

    Article  CAS  PubMed  Google Scholar 

  3. Maheshri N, Koerber JT, Kaspar BK et al (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24:198–204

    Article  CAS  PubMed  Google Scholar 

  4. Koerber JT, Maheshri N, Kaspar BK et al (2006) Construction of diverse adeno-associated viral libraries for directed evolution of enhanced gene delivery vehicles. Nat Protoc 1:701–706

    Article  CAS  PubMed  Google Scholar 

  5. Maguire CA, Gianni D, Meijer DH et al (2010) Directed evolution of adeno-associated virus for glioma cell transduction. J Neurooncol 96:337–347

    Article  PubMed Central  PubMed  Google Scholar 

  6. Li W, Asokan A, Wu Z et al (2008) Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther 16:1252–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Grimm D, Lee JS, Wang L et al (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82:5887–5911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gray SJ, Blake BL, Criswell HE et al (2010) Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 18:570–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Koerber JT, Jang J-H, Schaffer DV (2008) DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther 16:1703–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Müller OJ, Kaul F, Weitzman MD et al (2003) Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 21:1040–1046

    Article  PubMed  Google Scholar 

  11. Michelfelder S, Lee M-K, deLima-Hahn E et al (2007) Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol 35:1766–1776

    Article  CAS  PubMed  Google Scholar 

  12. Sellner L, Stiefelhagen M, Kleinschmidt JA et al (2008) Generation of efficient human blood progenitor-targeted recombinant adeno-associated viral vectors (AAV) by applying an AAV random peptide library on primary human hematopoietic progenitor cells. Exp Hematol 36:957–964

    Article  CAS  PubMed  Google Scholar 

  13. Naumer M, Ying Y, Michelfelder S et al (2012) Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions. Hum Gene Ther 23:492–507

    Article  CAS  PubMed  Google Scholar 

  14. Marsic D, Govindasamy L, Currlin S et al (2014) Vector design tour de force: integrating combinatorial and rational approaches to derive novel adeno-associated virus (AAV) variants. Mol Ther 22:1900–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Samulski RJ, Chang LS, Shenk T (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 61:3096–3101

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Samulski RJ, Xiao X (1997) Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 71:5236–5243

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Batard P, Jordan M, Wurm F (2001) Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection. Gene 270:61–68

    Article  CAS  PubMed  Google Scholar 

  19. Vandenberghe LH, Xiao R, Lock M et al (2010) Efficient serotype-dependent release of functional vector into the culture medium during adeno-associated virus manufacturing. Hum Gene Ther 21:1251–1257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zolotukhin S, Byrne BJ, Mason E et al (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6:973–985

    Article  CAS  PubMed  Google Scholar 

  21. Arad U (1998) Modified Hirt procedure for rapid purification of extrachromosomal DNA from mammalian cells. Biotechniques 24:760–762

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Zolotukhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marsic, D., Zolotukhin, S. (2016). Altering Tropism of rAAV by Directed Evolution. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics