Skip to main content

Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids

  • Protocol
Gene Therapy for Neurological Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hermonat PL, Muzyczka N (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A 81:6466–6470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Samulski RJ, Berns KI, Tan M, Muzyczka N (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79:2077–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Samulski RJ, Chang LS, Shenk T (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 61:3096–3101

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Tratschin JD, West MH, Sandbank T, Carter BJ (1984) A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 4:2072–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X et al (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gao G, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5:285–297

    Article  CAS  PubMed  Google Scholar 

  7. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ (2006) Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 80:9093–9103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 75:6884–6893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA (2006) The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 80:9831–9836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao GP, Van Vliet K et al (2011) The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 121:2427–2435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A (2011) Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 286:13532–13540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5:71–77

    Article  CAS  PubMed  Google Scholar 

  14. Summerford C, Bartlett JS, Samulski RJ (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5:78–82

    Article  CAS  PubMed  Google Scholar 

  15. Pilz IH, Di Pasquale G, Rzadzinska A, Leppla SH, Chiorini JA (2012) Mutation in the platelet-derived growth factor receptor alpha inhibits adeno-associated virus type 5 transduction. Virology 428:58–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Howard DB, Powers K, Wang Y, Harvey BK (2008) Tropism and toxicity of adeno-associated viral vector serotypes 1, 2, 5, 6, 7, 8, and 9 in rat neurons and glia in vitro. Virology 372:24–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Royo NC, Vandenberghe LH, Ma JY, Hauspurg A, Yu L, Maronski M et al (2008) Specific AAV serotypes stably transduce primary hippocampal and cortical cultures with high efficiency and low toxicity. Brain Res 1190:15–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bartlett JS, Samulski RJ, McCown TJ (1998) Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 9:1181–1186

    Article  CAS  PubMed  Google Scholar 

  19. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    Article  CAS  PubMed  Google Scholar 

  20. Passini MA, Watson DJ, Vite CH, Landsburg DJ, Feigenbaum AL, Wolfe JH (2003) Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol 77:7034–7040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13:528–537

    Article  CAS  PubMed  Google Scholar 

  22. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA et al (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97:3428–3432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Klein RL, Dayton RD, Tatom JB, Henderson KM, Henning PP (2008) AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: effects of serotype, promoter and purification method. Mol Ther 16:89–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hutson TH, Verhaagen J, Yanez-Munoz RJ, Moon LD (2012) Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector. Gene Ther 19:49–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Liu G, Martins IH, Chiorini JA, Davidson BL (2005) Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther 12:1503–1508

    Article  CAS  PubMed  Google Scholar 

  26. Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ (2009) Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther 17:1692–1702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Klein RL, Dayton RD, Leidenheimer NJ, Jansen K, Golde TE, Zweig RM (2006) Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol Ther 13:517–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Reimsnider S, Manfredsson FP, Muzyczka N, Mandel RJ (2007) Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat. Mol Ther 15:1504–1511

    Article  CAS  PubMed  Google Scholar 

  29. Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L et al (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18:195–206

    Article  CAS  PubMed  Google Scholar 

  30. Sondhi D, Hackett NR, Peterson DA, Stratton J, Baad M, Travis KM et al (2007) Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 Rhesus macaque-derived adeno-associated virus vector. Mol Ther 15:481–491

    Article  CAS  PubMed  Google Scholar 

  31. Vite CH, Passini MA, Haskins ME, Wolfe JH (2003) Adeno-associated virus vector-mediated transduction in the cat brain. Gene Ther 10:1874–1881

    Article  CAS  PubMed  Google Scholar 

  32. Passini MA, Watson DJ, Wolfe JH (2004) Gene delivery to the mouse brain with adeno-associated virus. Methods Mol Biol 246:225–236

    CAS  PubMed  Google Scholar 

  33. Peng SP, Kugler S, Ma ZK, Shen YQ, Schachner M (2011) Comparison of AAV2 and AAV5 in gene transfer in the injured spinal cord of mice. Neuroreport 22:565–569

    PubMed  Google Scholar 

  34. Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940

    Article  CAS  PubMed  Google Scholar 

  35. Li SF, Wang RZ, Meng QH, Li GL, Hu GJ, Dou WC et al (2006) Intra-ventricular infusion of rAAV1-EGFP resulted in transduction in multiple regions of adult rat brain: a comparative study with rAAV2 and rAAV5 vectors. Brain Res 1122:1–9

    Article  CAS  PubMed  Google Scholar 

  36. Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH (2008) Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 16:1710–1718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gray SJ, Nagabhushan KS, McCown TJ, Jude SR (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20:450–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Samaranch L, Salegio EA, San SW, Kells AP, Bringas JR, Forsayeth J et al (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24:526–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jacques SJ, Ahmed Z, Forbes A, Douglas MR, Vigenswara V, Berry M et al (2012) AAV8(gfp) preferentially targets large diameter dorsal root ganglion neurones after both intra-dorsal root ganglion and intrathecal injection. Mol Cell Neurosci 49:464–474

    Article  CAS  PubMed  Google Scholar 

  40. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ et al (2011) Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 22:1129–1135

    Article  CAS  PubMed  Google Scholar 

  41. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19:1058–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C et al (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22:1299–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R et al (2011) Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19:1440–1448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Towne C, Raoul C, Schneider BL, Aebischer P (2008) Systemic AAV6 delivery mediating RNA interference against SOD1: neuromuscular transduction does not alter disease progression in fALS mice. Mol Ther 16:1018–1025

    Article  CAS  PubMed  Google Scholar 

  46. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X et al (2003) Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 8:911–917

    Article  CAS  PubMed  Google Scholar 

  47. Chen SJ, Sanmiguel J, Lock M, McMenamin D, Draper C, Limberis MP et al (2013) Biodistribution of AAV8 vectors expressing human low-density lipoprotein receptor in a mouse model of homozygous familial hypercholesterolemia. Hum Gene Ther Clin Dev 24:154–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12:1072–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D et al (2007) Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 14:292–303

    Article  PubMed  CAS  Google Scholar 

  50. Stieger K, Colle MA, Dubreil L, Mendes-Madeira A, Weber M, Le Meur G et al (2008) Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain. Mol Ther 16:916–923

    Article  CAS  PubMed  Google Scholar 

  51. Lebherz C, Maguire A, Tang W, Bennett J, Wilson JM (2008) Novel AAV serotypes for improved ocular gene transfer. J Gene Med 10:375–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Lei B, Zhang K, Yue Y, Ghosh A, Duan D (2009) Adeno-associated virus serotype-9 efficiently transduces the retinal outer plexiform layer. Mol Vis 15:1374–1382

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Vandenberghe LH, Bell P, Maguire AM, Xiao R, Hopkins TB, Grant R et al (2013) AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One 8:e53463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R et al (2011) Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 3:88ra54

    Article  CAS  PubMed  Google Scholar 

  55. Boye SE, Alexander JJ, Boye SL, Witherspoon CD, Sandefer KJ, Conlon TJ et al (2012) The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina. Hum Gene Ther 23:1101–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hollis ER 2nd, Kadoya K, Hirsch M, Samulski RJ, Tuszynski MH (2008) Efficient retrograde neuronal transduction utilizing self-complementary AAV1. Mol Ther 16:296–301

    Article  CAS  PubMed  Google Scholar 

  57. Castle MJ, Gershenson ZT, Giles AR, Holzbaur EL, Wolfe JH (2014) Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25(8):705–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Castle MJ, Perlson E, Holzbaur EL, Wolfe JH (2014) Long-distance axonal transport of AAV9 is driven by dynein and kinesin-2 and is trafficked in a highly motile Rab7-positive compartment. Mol Ther 22:554–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Klaw MC, Xu C, Tom VJ (2013) Intraspinal AAV injections immediately rostral to a thoracic spinal cord injury site efficiently transduces neurons in spinal cord and brain. Mol Ther Nucleic Acids 2, e108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Masamizu Y, Okada T, Ishibashi H, Takeda S, Yuasa S, Nakahara K (2010) Efficient gene transfer into neurons in monkey brain by adeno-associated virus 8. Neuroreport 21:447–451

    Article  CAS  PubMed  Google Scholar 

  61. Schaffer DV, Koerber JT, Lim KI (2008) Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng 10:169–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Morizono K, Chen IS (2011) Receptors and tropisms of envelope viruses. Curr Opin Virol 1:13–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ (1999) Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’gamma)2 antibody. Nat Biotechnol 17:181–186

    Article  CAS  PubMed  Google Scholar 

  64. Ponnazhagan S, Mahendra G, Kumar S, Thompson JA, Castillas M Jr (2002) Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol 76:12900–12907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Le HT, Yu QC, Wilson JM, Croyle MA (2005) Utility of PEGylated recombinant adeno-associated viruses for gene transfer. J Control Release 108:161–177

    Article  CAS  PubMed  Google Scholar 

  66. Carlisle RC, Benjamin R, Briggs SS, Sumner-Jones S, McIntosh J, Gill D et al (2008) Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med 10:400–411

    Article  CAS  PubMed  Google Scholar 

  67. Horowitz ED, Weinberg MS, Asokan A (2011) Glycated AAV vectors: chemical redirection of viral tissue tropism. Bioconjug Chem 22:529–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Rabinowitz JE, Samulski RJ (2000) Building a better vector: the manipulation of AAV virions. Virology 278:301–308

    Article  CAS  PubMed  Google Scholar 

  69. Hauck B, Chen L, Xiao W (2003) Generation and characterization of chimeric recombinant AAV vectors. Mol Ther 7:419–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Koprich JB, Johnston TH, Reyes MG, Sun X, Brotchie JM (2010) Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson’s disease. Mol Neurodegener 5:43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Rabinowitz JE, Bowles DE, Faust SM, Ledford JG, Cunningham SE, Samulski RJ (2004) Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol 78:4421–4432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Yang Q, Mamounas M, Yu G, Kennedy S, Leaker B, Merson J et al (1998) Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum Gene Ther 9:1929–1937

    Article  CAS  PubMed  Google Scholar 

  73. Opie SR, Warrington KH Jr, Agbandje-McKenna M, Zolotukhin S, Muzyczka N (2003) Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol 77:6995–7006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Girod A, Ried M, Wobus C, Lahm H, Leike K, Kleinschmidt J et al (1999) Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 5:1438

    Article  CAS  PubMed  Google Scholar 

  75. Shi W, Arnold GS, Bartlett JS (2001) Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther 12:1697–1711

    Article  CAS  PubMed  Google Scholar 

  76. Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M, Ferkol T et al (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74:8635–8647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Grifman M, Trepel M, Speece P, Gilbert LB, Arap W, Pasqualini R et al (2001) Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 3:964–975

    Article  CAS  PubMed  Google Scholar 

  78. Warrington KH Jr, Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N (2004) Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78:6595–6609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Gigout L, Rebollo P, Clement N, Warrington KH Jr, Muzyczka N, Linden RM et al (2005) Altering AAV tropism with mosaic viral capsids. Mol Ther 11:856–865

    Article  CAS  PubMed  Google Scholar 

  80. Judd J, Wei F, Nguyen PQ, Tartaglia LJ, Agbandje-McKenna M, Silberg JJ et al (2012) Random insertion of mCherry Into VP3 domain of adeno-associated virus yields fluorescent capsids with no loss of infectivity. Mol Ther Nucleic Acids 1:e54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Yu CY, Yuan Z, Cao Z, Wang B, Qiao C, Li J et al (2009) A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16:953–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Lee NC, Falk DJ, Byrne BJ, Conlon TJ, Clement N, Porvasnik S et al (2012) An acidic oligopeptide displayed on AAV2 improves axial muscle tropism after systemic delivery. Genet Vaccines Ther 10:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Ying Y, Muller OJ, Goehringer C, Leuchs B, Trepel M, Katus HA et al (2010) Heart-targeted adeno-associated viral vectors selected by in vivo biopanning of a random viral display peptide library. Gene Ther 17:980–990

    Article  CAS  PubMed  Google Scholar 

  84. White SJ, Nicklin SA, Buning H, Brosnan MJ, Leike K, Papadakis ED et al (2004) Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109:513–519

    Article  CAS  PubMed  Google Scholar 

  85. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N et al (2006) Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 13:683–693

    Article  CAS  PubMed  Google Scholar 

  86. White K, Buning H, Kritz A, Janicki H, McVey J, Perabo L et al (2008) Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions. Gene Ther 15:443–451

    Article  CAS  PubMed  Google Scholar 

  87. Michelfelder S, Kohlschutter J, Skorupa A, Pfennings S, Muller O, Kleinschmidt JA et al (2009) Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. PLoS One 4:e5122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Michelfelder S, Varadi K, Raupp C, Hunger A, Korbelin J, Pahrmann C et al (2011) Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo. PLoS One 6:e23101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Chen YH, Chang M, Davidson BL (2009) Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy. Nat Med 15:1215–1218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra176

    Article  CAS  Google Scholar 

  91. Shi W, Bartlett JS (2003) RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther 7:515–525

    Article  CAS  PubMed  Google Scholar 

  92. Kern A, Schmidt K, Leder C, Muller OJ, Wobus CE, Bettinger K et al (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Li W, Asokan A, Wu Z, Van Dyke T, DiPrimio N, Johnson JS et al (2008) Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther 16:1252–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24:198–204

    Article  CAS  PubMed  Google Scholar 

  95. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C et al (2009) A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A 106:3946–3951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Excoffon KJ, Koerber JT, Dickey DD, Murtha M, Keshavjee S, Kaspar BK et al (2009) Directed evolution of adeno-associated virus to an infectious respiratory virus. Proc Natl Acad Sci U S A 106:3865–3870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Li W, Zhang L, Johnson JS, Zhijian W, Grieger JC, Ping-Jie X et al (2009) Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. Mol Ther 17:2067–2077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV (2009) A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PLoS One 4:e7467

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Koerber JT, Klimczak R, Jang JH, Dalkara D, Flannery JG, Schaffer DV (2009) Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther 17:2088–2095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Maguire CA, Gianni D, Meijer DH, Shaket LA, Wakimoto H, Rabkin SD et al (2010) Directed evolution of adeno-associated virus for glioma cell transduction. J Neurooncol 96:337–347

    Article  PubMed Central  PubMed  Google Scholar 

  101. Gray SJ, Blake BL, Criswell HE, Nicolson SC, Samulski RJ, McCown TJ et al (2010) Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 18:570–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Jang JH, Koerber JT, Kim JS, Asuri P, Vazin T, Bartel M et al (2011) An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol Ther 19:667–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Asuri P, Bartel MA, Vazin T, Jang JH, Wong TB, Schaffer DV (2012) Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther 20:329–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R et al (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28:79–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS et al (2012) Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20:443–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ (2006) Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 80:11393–11397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Vandenberghe LH, Breous E, Nam HJ, Gao G, Xiao R, Sandhu A et al (2009) Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints. Gene Ther 16:1416–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM (2009) Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 17:294–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Lochrie MA, Tatsuno GP, Christie B, McDonnell JW, Zhou S, Surosky R et al (2006) Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J Virol 80:821–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Li C, Diprimio N, Bowles DE, Hirsch ML, Monahan PE, Asokan A et al (2012) Single amino acid modification of adeno-associated virus capsid changes transduction and humoral immune profiles. J Virol 86:7752–7759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 105:7827–7832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Kay CN, Ryals RC, Aslanidi GV, Min SH, Ruan Q, Sun J et al (2013) Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 8:e62097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Li M, Jayandharan GR, Li B, Ling C, Ma W, Srivastava A et al (2010) High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Hum Gene Ther 21:1527–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M et al (2008) Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:194–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ et al (2009) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17:463–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH et al (2011) Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19:293–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Iida A, Takino N, Miyauchi H, Shimazaki K, Muramatsu S (2013) Systemic delivery of tyrosine-mutant AAV vectors results in robust transduction of neurons in adult mice. Biomed Res Int 2013:974819

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Zolotukhin I, Luo D, Gorbatyuk O, Hoffman B, Warrington K Jr, Herzog R et al (2013) Improved adeno-associated viral gene transfer to Murine glioma. J Genet Syndr Gene Ther 4

    Google Scholar 

  119. Gabriel N, Hareendran S, Sen D, Gadkari RA, Sudha G, Selot R et al (2013) Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo. Hum Gene Ther Methods 24:80–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161:441–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Xu R, Janson CG, Mastakov M, Lawlor P, Young D, Mouravlev A et al (2001) Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther 8:1323–1332

    Article  CAS  PubMed  Google Scholar 

  122. Kugler S, Lingor P, Scholl U, Zolotukhin S, Bahr M (2003) Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology 311:89–95

    Article  CAS  PubMed  Google Scholar 

  123. Gray SJ, Foti SB, Schwartz JW, Bachaboina L, Taylor-Blake B, Coleman J et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Husain T, Passini MA, Parente MK, Fraser NW, Wolfe JH (2009) Long-term AAV vector gene and protein expression in mouse brain from a small pan-cellular promoter is similar to neural cell promoters. Gene Ther 16:927–932

    Article  CAS  PubMed  Google Scholar 

  125. von Jonquieres G, Mersmann N, Klugmann CB, Harasta AE, Lutz B, Teahan O et al (2013) Glial promoter selectivity following AAV-delivery to the immature brain. PLoS One 8:e65646

    Article  CAS  Google Scholar 

  126. Paterna JC, Moccetti T, Mura A, Feldon J, Bueler H (2000) Influence of promoter and WHV post-transcriptional regulatory element on AAV-mediated transgene expression in the rat brain. Gene Ther 7:1304–1311

    Article  CAS  PubMed  Google Scholar 

  127. Kingsman SM, Mitrophanous K, Olsen JC (2005) Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Ther 12:3–4

    Article  CAS  PubMed  Google Scholar 

  128. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D et al (2006) Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 13:641–645

    Article  CAS  PubMed  Google Scholar 

  129. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R et al (2011) microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 18:199–209

    Article  CAS  PubMed  Google Scholar 

  130. Karali M, Manfredi A, Puppo A, Marrocco E, Gargiulo A, Allocca M et al (2011) MicroRNA-restricted transgene expression in the retina. PLoS One 6:e22166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C et al (2011) Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther 18:403–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The AAV work in our laboratories is supported by NIH grants R01-NS038690, R01-DK063973 and U01-HD079066 to J.H.W. and DP1-OD008267 to L.H.V.; additional support was provided to J.H.W. from the Foerderer Fdn and to L.H.V. from Curing Kids Fund, Foundation for Retina Research, Foundation Fighting Blindness, Research to Prevent Blindness, and Corinne and Wyc Grousbeck. M.J.C. was supported in part by NIH T32-NS007413. L.H.V. is an inventor on patents related to AAV gene therapy ; has served as a consultant; is inventor on technologies licensed to biotechnology and pharmaceutical industry; and is cofounder and consultant to GenSight Biologics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Wolfe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Castle, M.J., Turunen, H.T., Vandenberghe, L.H., Wolfe, J.H. (2016). Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics