Algorithms for Warping of 2-D PAGE Maps

  • Marcello ManfrediEmail author
  • Elisa Robotti
  • Emilio Marengo
Part of the Methods in Molecular Biology book series (MIMB, volume 1384)


Software-based image analysis of 2-D PAGE maps is an important step for the investigation of proteome. Warping algorithms, which are employed to register spots among gels, are able to overcome the difficulties due to the low reproducibility of this analytical technique. Over the years, the research of new matching and warping mathematical methods has allowed the development of several routine applications of easy-to-use software. This chapter describes common and basic spatial transformations used for the alignment of protein spots present in different gel maps; some recently new approaches are also presented.

Key words

2-D PAGE analysis Warping Gel matching Data analysis Image processing 


  1. 1.
    Choe LH, Lee KH (2003) Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis. Electrophoresis 24:3500–3507CrossRefPubMedGoogle Scholar
  2. 2.
    Rohr K, Cathier P, Worz S (2004) Elastic registration of electrophoresis images using intensity information and point landmarks. Pattern Recogn 37:1035–1048CrossRefGoogle Scholar
  3. 3.
    Wolberg G (1994) Digital image warping. IEEE Computer Society Press, Los Alamitos, CAGoogle Scholar
  4. 4.
    Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  5. 5.
    Shi G, Jiang T, Zhu W, Liu B, Zhao H (2007) Alignment of two-dimensional electrophoresis gels. Biochem Biophys Res Commun 357:427–432CrossRefPubMedGoogle Scholar
  6. 6.
    Raman B, Cheung A, Marten MR (2002) Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie. Electrophoresis 23:2194–2202CrossRefPubMedGoogle Scholar
  7. 7.
    Appel RD, Vargas JR, Palagi PM, Walther D, Hochstrasser DF (1997) Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms. Electrophoresis 18:2735–2748CrossRefPubMedGoogle Scholar
  8. 8.
    Lemkin PF (1997) Comparing two-dimensional gels across the internet. Electrophoresis 18(3–4):461–470CrossRefPubMedGoogle Scholar
  9. 9.
    Efrat A, Hoffmann F, Kriegel K, Schultz C, Wenk C (2002) Geometric algorithms for the analysis of 2D-electrophoresis gels. J Comput Biol 9(2):299–316CrossRefPubMedGoogle Scholar
  10. 10.
    Baker M, Busse H, Vogt M (2000) An automatic registration and segmentation algorithm for multiple electrophoresis images. In: Hanson KM (ed) Medical Imaging 2000 — Image Processing (MI’2000), Proceedings of the SPIE International Symposium, vol. 3979, 14–17 February 2000, San Diego/CA, pp 426–436Google Scholar
  11. 11.
    Smilansky Z (2001) Automatic registration for images of two-dimensional protein gels. Electrophoresis 22:1616–1626CrossRefPubMedGoogle Scholar
  12. 12.
    Veeser S, Dunn MJ, Yang G-Z (2001) Multiresolution image registration for two-dimensional gel electrophoresis. Proteomics 1:856–870CrossRefPubMedGoogle Scholar
  13. 13.
    Josso B, Zindy E, Aldemir H (2000) Automatic 2D gel registration using distance minimisation of image morphing. Proceedings of the IEEE International Conference on Information Visualization (IV’00), London, England, 19–21 July 2000, pp 357–361Google Scholar
  14. 14.
    Gustafsson JD, Blomberg A, Rudemo M (2002) Warping two-dimensional electrophoresis gel images to correct for geometric distortions of the spot pattern. Electrophoresis 23:1731–1744CrossRefPubMedGoogle Scholar
  15. 15.
    West J, Fitzpatrick JM et al. (1997) Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21(4):554–566CrossRefPubMedGoogle Scholar
  16. 16.
    Cachier P, Mangin J-F, Pennec X, RiviVere D, Papadopoulos-Orfanos D, Wegis JR, Ayache N (2001) Multisubject non-rigid registration of brain MRI using intensity and geometric features, Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’2001), Utrecht, The Netherlands, 14–17 October 2001. In: Niessen WJ, Viergever MA (eds) Lecture notes in computer science, vol 2208. Springer, Berlin, pp 734–742Google Scholar
  17. 17.
    Collins DL, Le Goualher G, Evans AC (1998) Non-linear cerebral registration with sulcal constraints, Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), Massachusetts Institute of Technology (MIT), Cambridge/MA, USA, 11–13 October 1998. In: Wells WM, Colchester A, Delp S (eds) Lecture notes in computer science, vol 1496. Springer, Berlin, pp 974–984Google Scholar
  18. 18.
    Wang Y, Staib LH (1998) Elastic model based non-rigid registration incorporating statistical shape information, Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), Massachusetts Institute of Technology (MIT), Cambridge/MA, USA, 11–13 October 1998. In: Wells WM, Colchester A, Delp S (eds) Lecture notes in computer science, vol 1496. Springer, Berlin, p 1162–1173Google Scholar
  19. 19.
    Hellier P, Barillot C (2001) Cooperation between local and global approaches to register brain images, Proceedings of the 17th International Conference on Information Processing in Medical Imaging (IPMI’01), Davis, CA, USA, 18–22 June 2001. In: Insana MS, Leahy RM (eds) Lecture notes in computer science, vol 2082. Springer, Berlin, pp 315–328Google Scholar
  20. 20.
    Johnson HJ, Christensen GE (2002) Consistent landmark and intensity-based image registration. IEEE Trans Med Imaging 21(5):450–461CrossRefPubMedGoogle Scholar
  21. 21.
    Hartkens T, Hill DLG, Castellano-Smith AD, Hawkes DJ, Maurer CR, Martin AJ, Hall WA, Liu H, Truwit CL (2002) Using points and surfaces to improve voxel-based non-rigid registration, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’02), Tokyo/Japan, September 2002. In: Dohi T, Kikinis R (eds) Lecture notes in computer science, vol 2489, Part II. Springer, Berlin, pp 565–572Google Scholar
  22. 22.
    Modersitzki J, Fischer B (2003) Optimal image registration with a guaranteed one-to-one point match. In: Wittenberg T, Hastreiter P, Hoppe U, Handels H, Horsch A, Meinzer H-P (eds) Proceedings of the Workshop Bildverarbeitung fur die Medizin 2003—Algorithmen, Systeme, Anwendungen— Erlangen/Germany, 9.-11. Marz 2003. Informatik aktuell. Springer, Berlin, pp 1–5Google Scholar
  23. 23.
    Takahashi K, Nakazawa M, Watanabe Y, Konagaya A (1998) Fully-automated spot recognition and matching algorithms for 2-D gel electrophoretogram of genomic DNA. In Proceedings of genome informatics workshop, pp 161–172Google Scholar
  24. 24.
    Takahashi K, Nakazawa M, Watanabe Y, Konagaya A (1999) Automated processing of 2-D gel electrophoretograms of genomic DNA for hunting pathogenic DNA molecular changes. In Proceedings of genome informatics workshop, pp 121–132Google Scholar
  25. 25.
    Matsuyama T, Abe T, Bae CH, Takahashi Y, Kiuchi R, Nakano T, Asami T, Yoshida S (2000) Adaptation of restriction landmark genomic scanning (RGLS) to plant genome analysis. Plant Mol Biol Report 18:331–338CrossRefGoogle Scholar
  26. 26.
    Marengo E, Cocchi M, Demartini M, Robotti E, Cecconi D, Calabrese G (2012) GENOCOP algorithm and hierarchical grid transformation for image warping of two dimensional gel electrophoretic maps. Mol Biosyst 8(4):975–984CrossRefPubMedGoogle Scholar
  27. 27.
    Glasbey CA, Mardia KV (1998) A review of image-warping methods. J Appl Stat 25(2):155–171CrossRefGoogle Scholar
  28. 28.
    Tang YT, Suen CY (1993) Image transformation approach to nonlinear shape restoration. IEEE Trans Syst Man Cybern 23(1):155–172CrossRefGoogle Scholar
  29. 29.
    Bookstein FL (1989) Principle warps: thin plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 16:460–468Google Scholar
  30. 30.
    Wahba G (1979) How to smooth curves and surfaces with splines and cross-validation. Proceedings of the 24th conference on the design of experiments. US Army Research Office 79-2, pp 167–192Google Scholar
  31. 31.
    Nagel HH (1983) Displacement vectors derived from second order intensity variations in image sequences. Comput Vision Graph Image Process 21:85–117CrossRefGoogle Scholar
  32. 32.
    Lemkin P, Lipkin LE (1981) GELLAB: a computer system for 2D gel electrophoresis analysis. II. Pairing spots. Comput Biomed Res 14:355–380CrossRefPubMedGoogle Scholar
  33. 33.
    Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformation. IEEE Trans Pattern Anal Mach Intell 11:567–585CrossRefGoogle Scholar
  34. 34.
    Horgan G, Creasey A, Fenton B (1992) Superimposing two-dimensional gels to study genetic variation in malaria parasites. Electrophoresis 13:871–875CrossRefPubMedGoogle Scholar
  35. 35.
    Little JA, Hill DLG, Hawkes DJ (1997) Deformations incorporating rigid structures. Comput Vis Image Und 66:223–232CrossRefGoogle Scholar
  36. 36.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRefGoogle Scholar
  37. 37.
    Hill DLG, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:R1–R45CrossRefPubMedGoogle Scholar
  38. 38.
    Masuda T, Sakaue K, Yokoya N (1996) Registration and integration of multiple range images for 3-D model construction. Proceedings of the 13th International Conference on Pattern Recognition Volume IV, Track D: Parallel and Connectionist Systems, 25–29 August 1996, Vienna, Austria, p. 879–883Google Scholar
  39. 39.
    Pulli K (1999) Multiview registration for large data sets. Second International Conference on 3-D Digital Imaging and Modeling, p. 160–168Google Scholar
  40. 40.
    Noma A, Pardo A, Cesar RM (2011) Structural matching of 2D electrophoresis gels using deformed graphs. Pattern Recogn Lett 32:3–11CrossRefGoogle Scholar
  41. 41.
    Chui H, Rangarajan A (2000) A new algorithm for non-rigid point matching. IEEE Conf Comput Vis Pattern Recognit 2:44–51Google Scholar
  42. 42.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522CrossRefGoogle Scholar
  43. 43.
    Almansa A, Gerschuni M, Pardo A, Preciozzi J (2007) Processing of 2D electrophoresis gels. In: 1st International workshop on computer vision applications for developing regions in conjunction with ICCV, Rio de Janeiro, BrazilGoogle Scholar
  44. 44.
    Barrow HG, Popplestone RJ (1971) Relational descriptions in picture processing. Mach Intell 6:377–396Google Scholar
  45. 45.
    Tsai WH, Fu KS (1979) Error-correcting isomorphisms of attributed relational graphs for pattern analysis. IEEE Trans Systems Man Cybern 9(12):757–768CrossRefGoogle Scholar
  46. 46.
    Bunke H (1997) On a relation between graph edit distance and maximum common subgraph. Pattern Recognit Lett 18(9):689–694CrossRefGoogle Scholar
  47. 47.
    Rogers M, Graham M (2007) Robust and accurate registration of 2-D electrophoresis gels using point matching. IEEE Trans Image Proc 16(3):624–635CrossRefGoogle Scholar
  48. 48.
    Cesar RM Jr, Bengoetxea E, Bloch I, Larrañaga P (2005) Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recogn 38(11):2099–2113CrossRefGoogle Scholar
  49. 49.
    Srinark T, Kambhamettu C (2008) An image analysis suite for spot detection and spot matching in two-dimensional electrophoresis gels. Electrophoresis 29:706–715CrossRefPubMedGoogle Scholar
  50. 50.
    Glasbey CA, Mardia KV (2001) A penalized likelihood approach to image warping. J R Statistic Soc B 63:465–514CrossRefGoogle Scholar
  51. 51.
    Færgestad EM, Rye M, Walczak B, Gidskehaug L, Wold JP, Grove H, Jia X, Hollung K, Indahl UG, Westad F, van den Berg F, Martens H (2007) Pixel-based analysis of multiple images for the identification of changes: a novel approach applied to unravel proteome patters of 2-D electrophoresis gel images. Proteomics 7:3450–3461CrossRefPubMedGoogle Scholar
  52. 52.
    Lieber CA, Jansen AM (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57:1363–1367CrossRefPubMedGoogle Scholar
  53. 53.
    Eilers PHC, Currie ID, Durban M (2006) Fast and compact smoothing on large multidimensional grids. Comput Stat Data Anal 50:61–76CrossRefGoogle Scholar
  54. 54.
    Kaczmarek K, Walczak B, de Jong S, Vandeginste BGM (2005) Baseline reduction in two dimensional gel electrophoresis images. Acta Chromatogr 15:82–96Google Scholar
  55. 55.
    Martens H, Martens M (2001) Multivariate analysis of quality. An Introduction. Wiley, ChichesterGoogle Scholar
  56. 56.
    Daszykowski M, Stanimirova I, Bodzon-Kulakowsk A, Silberring J, Lubec G, Walczak B (2007) Start-to-end processing of two-dimensional gel electrophoretic images. J Chromatogr A 1158:306–317CrossRefPubMedGoogle Scholar
  57. 57.
    Kaczmarek K, Walczak B, de Jong S, Vandeginste BGM (2002) Feature based fuzzy matching of 2D gel electrophoresis images. J Chem Inf Comput Sci 42:1431–1442CrossRefPubMedGoogle Scholar
  58. 58.
    Kaczmarek K, Walczak B, de Jong S, Vandeginste BGM (2003) Matching of 2D gel electrophoresis images. J Chem Inf Comput Sci 43:978–986CrossRefPubMedGoogle Scholar
  59. 59.
    Walczak B, Wu W (2005) Fuzzy warping of chromatograms. Chemom Intell Lab Syst 77:173–180CrossRefGoogle Scholar
  60. 60.
    Sinkhorn R (1996) A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann Math Stat 35:876–879CrossRefGoogle Scholar
  61. 61.
    Rodriguez A, Fernandez-Lozano C, Dorado J, Rabuñal JR (2014) Two-dimensional gel electrophoresis image registration using block-matching techniques and deformation models. Anal Biochem 454:53–59CrossRefPubMedGoogle Scholar
  62. 62.
    Lester H, Arridge SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recogn 32:129–149CrossRefGoogle Scholar
  63. 63.
    Hajnal JV, Hill DJ, Hawkes DJ (2001) Medical image registration. CRC Press, LondonCrossRefGoogle Scholar
  64. 64.
    Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721CrossRefPubMedGoogle Scholar
  65. 65.
    Starck JL, Murtagh F, Bijaoui A (1998) Geometric registration. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  66. 66.
    Szeliski R, Shum HY (1996) Motion estimation with quadtree splines. IEEE Trans Pattern Anal Mach Intell 18(12):1199–1209CrossRefGoogle Scholar
  67. 67.
    Downie TR, Shepstone L, Silverman BW (1996) A wavelet based approach to deformable templates In: Madia KV et al. (eds) Proceedings of the image fusion and shape variability techniques. Leeds University Press, pp 161–169.Google Scholar
  68. 68.
    Amit Y (1994) A nonlinear variational problem for image matching. SIAM J Sci Comput 15:207–224CrossRefGoogle Scholar
  69. 69.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1997) The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, pp 425–430Google Scholar
  70. 70.
    Woodward AM, Rowland JJ, Kell DB (2004) Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels. Analyst 129:542–552CrossRefPubMedGoogle Scholar
  71. 71.
    Alsberg BK, Woodward AM, Kell DB (1997) An introduction to wavelet transforms for chemometricians: a time-frequency approach. Chemom Intell Lab Syst 37:215–239CrossRefGoogle Scholar
  72. 72.
    Akansu AN, Haddad RA (1992) Multiresolution signal decomposition: transforms, subbands, and wavelets. Academic, New YorkGoogle Scholar
  73. 73.
    Daubechies I (1992) Ten lectures on wavelets. SIAM, PhiladelphiaCrossRefGoogle Scholar
  74. 74.
    Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90:1200–1224CrossRefGoogle Scholar
  75. 75.
    Grossmann A, Kronland-Martinet R, Morlet J (1989) Reading and understanding continuous wavelet transforms, wavelets: time- frequency methods and phase space. Springer, New YorkCrossRefGoogle Scholar
  76. 76.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693CrossRefGoogle Scholar
  77. 77.
    Vetterli M, Kovacevic J (1995) Wavelets and subband coding. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  78. 78.
    Magarey J, Kingsbury N (1996) An improved motion estimation algorithm using complex wavelets. In Proceedings of the IEEE conference on image processing, pp 969–972Google Scholar
  79. 79.
    Magarey J, Kokaram A, Kingsbury N (1997) In Proceedings of the IEEE conference on image processing, IEEE, Santa Barbara, pp 187–190Google Scholar
  80. 80.
    Magarey JFA, Kingsbury NG (1998) Motion estimation using a complex-valued wavelet transform. IEEE Trans Signal Process 46:1069–1084CrossRefGoogle Scholar
  81. 81.
    Lin D-T (2010) Autonomous sub-image matching for two-dimensional electrophoresis gels using MaxRST algorithm. Image Vis Comput 28:1267–1279CrossRefGoogle Scholar
  82. 82.
    Garrels JI (1979) Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. Biol Chem 254:796l–7977lGoogle Scholar
  83. 83.
    Lin D-T, Kuo J-L, Lin E-C, Huang S-Y (2004) Improved watershed algorithm spot detection on protein 2D gel electrophoresis images. In: The 6th IASTED international conference on signal and images processingGoogle Scholar
  84. 84.
    Horowitz E, Sahni S, Mehta D (1995) Fundamentals of data structures in C++. Computer Science, PotomacGoogle Scholar
  85. 85.
    Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic – theory and application. Prentice Hall International Editions, Upper Saddle River, NJGoogle Scholar
  86. 86.
    Delaunay B (1934) Sur la sphère vide. Izv Akad Nauk SSSR Otd Mat Estest Nauk 7:793–800Google Scholar
  87. 87.
    Daszykowski M, Færgestad EM, Grove H, Martens H, Walczak B (2009) Matching 2D gel electrophoresis images with Matlab ‘Image Processing Toolbox’. Chemom Intell Lab Syst 96:188–195CrossRefGoogle Scholar
  88. 88.
    Kaczmarek K, Walczak B, de Jong S, Vandeginste BMG (2003) Comparison of image transformations methods used in matching of 2D gel electrophoresis images. Acta Chromatogr 13:7–21Google Scholar
  89. 89.
    Dowsey AW, Dunn MJ, Yang G-Z (2008) Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline. Bioinformatics 24(7):950–957CrossRefPubMedGoogle Scholar
  90. 90.
    Dowsey AW, English J, Pennington K, Cotter D, Stuehler K, Marcus K, Meyer HE, Dunn MJ, Yang G-Z (2006) Examination of 2-DE in the Human Proteome Organisation Brain Proteome Project pilot studies with the new RAIN gel matching technique. Proteomics 6:5030–5047CrossRefPubMedGoogle Scholar
  91. 91.
    Schoenberg IJ (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Quart Appl Math 4:45–99Google Scholar
  92. 92.
    Shen D, Davatzikos C (2003) Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration. Neuroimage 18:28–41CrossRefPubMedGoogle Scholar
  93. 93.
    Roche A, Malandain G, Ayache N (2000) Unifying maximum likelihood approaches in medical image registration. Int J Imaging Syst Technol 11:71–80CrossRefGoogle Scholar
  94. 94.
    Wörz S, Winz M-L, Rohr K (2009) Geometric alignment of 2D gel electrophoresis. Images Methods Inf Med 48:320–323CrossRefPubMedGoogle Scholar
  95. 95.
    Sorzano CÓS, Thévenaz P, Unser M (2005) Elastic registration of biological images using vector-spline regularization. IEEE Trans Biomed Eng 52(4):652–663CrossRefPubMedGoogle Scholar
  96. 96.
    Wang X, Feng DD (2005) Hybrid registration for 2D gel protein images. In: Proceedings of the 3rd Asia-Pacific bioinformatics conference Singapore. Imperial College Press, LondonGoogle Scholar
  97. 97.
    Wörz S, Rohr K (2008) Physics-based elastic registration using non-radial basis functions and including landmark localization uncertainties. Comput Vis Image Underst 111:263–274CrossRefGoogle Scholar
  98. 98.
    Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41CrossRefPubMedGoogle Scholar
  99. 99.
    Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern recognition. Int J Pattern Recognit Artificial Intell 18(3):265–298CrossRefGoogle Scholar
  100. 100.
    Daszykowski M, Walczak B (2007) Target selection for alignment of chromatographic signals obtained using monochannel detectors. J Chromatogr A 1176:1–11CrossRefPubMedGoogle Scholar
  101. 101.
    Strang G (1993) Wavelet transforms versus Fourier transforms. Bull Am Math Soc 28:288–305CrossRefGoogle Scholar
  102. 102.
    Cachier P, Pennec X (2000) 3D non-rigid registration by gradient descent on a Gaussian-Windowed similarity measure using convolutions. Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA’00), 11–12 June 2000, Hilton Head, SC, USA, IEEE Computer Society Press, Silver Spring, MD, pp 182–189Google Scholar
  103. 103.
    Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic, New YorkGoogle Scholar
  104. 104.
    Cashier P, Ayache N (2004) Isotropic energies, filters and splines for vector field regularization. J Math Imaging Vis 20(3):251–265CrossRefGoogle Scholar
  105. 105.
    Kohlrausch J, Rohr K, Stiehl HS (2005) A new class of elastic body splines for nonrigid registration of medical images. J Math Imaging Vis 23(3):253–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marcello Manfredi
    • 1
    • 2
    Email author
  • Elisa Robotti
    • 1
  • Emilio Marengo
    • 1
  1. 1.Department of Sciences and Technological InnovationUniversity of Piemonte OrientaleAlessandriaItaly
  2. 2.High Resolution Mass Spectrometry Lab, ISALIT SRLSpin-off of University of Piemonte Orientale, Politecnico di TorinoAlessandriaItaly

Personalised recommendations