Advertisement

Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE

  • Elisa RobottiEmail author
  • Emilio Marengo
  • Fabio Quasso
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1384)

Abstract

Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers.

Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.

Key words

Normalization Gel-electrophoresis 2-D DIGE 

References

  1. 1.
    Rye M, Fargestad EM (2012) Preprocessing of electrophoretic images in 2-DE analysis. Chemom Intell Lab Syst 117:70–79CrossRefGoogle Scholar
  2. 2.
    Moller B, Posch S (2009) Robust features for 2-DE gel image registration. Electrophoresis 30:4137–4148CrossRefPubMedGoogle Scholar
  3. 3.
    Srinark T, Kambhamettu C (2008) An image analysis suite for spot detection and spot matching in two-dimensional electrophoresis gels. Electrophoresis 29:706–715CrossRefPubMedGoogle Scholar
  4. 4.
    Liu YS, Chen SY, Liu RS, Duh DJ, Chao YT, Tsai YC, Hsieh JS (2009) Spot detection for a 2-DE gel image using a slice tree with confidence evaluation. Math Comput Modell 50:1–14CrossRefGoogle Scholar
  5. 5.
    Cutler P, Heald G, White IR, Ruan J (2003) A novel approach to spot detection for two-dimensional gel electrophoresis images using pixel value collection. Proteomics 3:392–401CrossRefPubMedGoogle Scholar
  6. 6.
    Kazhiyur-Mannar R, Smiraglia DJ, Plass C, Wenger R (2006) Contour area filtering of two-dimensional electrophoresis images. Med Image Anal 10:353–365CrossRefPubMedGoogle Scholar
  7. 7.
    Wu Y, Lemkin PF, Upton K (1993) A fast spot segmentation algorithm for two-dimensional gel electrophoresis analysis. Electrophoresis 14:1351–1356CrossRefPubMedGoogle Scholar
  8. 8.
    Bettens E, Scheunders P, VanDyck D, Moens L, VanOsta P (1997) Computer analysis of two-dimensional electrophoresis gels: a new segmentation and modeling algorithm. Electrophoresis 18:792–798CrossRefPubMedGoogle Scholar
  9. 9.
    Tsakanikas P, Manolakos ES (2011) Protein spot detection and quantification in 2-DE gel images using machine-learning methods. Proteomics 11:2038–2050CrossRefPubMedGoogle Scholar
  10. 10.
    Langella O, Zivy M (2008) A method based on bead flows for spot detection on 2-D gel images. Proteomics 8:4914–4918CrossRefPubMedGoogle Scholar
  11. 11.
    Dowsey AW, Dunn MJ, Yang GZ (2003) The role of bioinformatics in two-dimensional gel electrophoresis. Proteomics 3:1567–1596CrossRefPubMedGoogle Scholar
  12. 12.
    Conradsen K, Pedersen J (1992) Analysis of 2-dimensional electrophoretic gels. Biometrics 48:1273–1287CrossRefGoogle Scholar
  13. 13.
    Woodward AM, Rowland JJ, Kell DB (2004) Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels. Analyst 129:542–552CrossRefPubMedGoogle Scholar
  14. 14.
    Luhn S, Berth M, Hecker M, Bernhardt J (2003) Using standard positions and image fusion to create proteome maps from collections of two-dimensional gel electrophoresis images. Proteomics 3:1117–1127CrossRefPubMedGoogle Scholar
  15. 15.
    Schultz J, Gottlieb DM, Petersen M, Nesic L, Jacobsen S, Sondergaard I (2004) Explorative data analysis of two-dimensional electrophoresis gels. Electrophoresis 25:502–511CrossRefPubMedGoogle Scholar
  16. 16.
    Salmi J, Aittokallio T, Westerholm J, Griese M, Rosengren A, Nyman TA, Lahesmaa R, Nevalainen O (2002) Hierarchical grid transformation for image warping in the analysis of two-dimensional electrophoresis gels. Proteomics 2:1504–1515CrossRefPubMedGoogle Scholar
  17. 17.
    Panek J, Vohradsky J (1999) Point pattern matching in the analysis of two-dimensional gel electropherograms. Electrophoresis 20:3483–3491CrossRefPubMedGoogle Scholar
  18. 18.
    Kaczmarek K, Walczak B, de Jong S, Vandeginste BG (2002) Feature based fuzzy matching of 2D gel electrophoresis images. J Chem Inf Comput Sci 42:1431–1442CrossRefPubMedGoogle Scholar
  19. 19.
    Gustafsson JS, Blomberg A, Rudemo M (2002) Warping two-dimensional electrophoresis gel images to correct for geometric distortions of the spot pattern. Electrophoresis 23:1731–1744CrossRefPubMedGoogle Scholar
  20. 20.
    Smilansky Z (2001) Automatic registration for images of two-dimensional protein gels. Electrophoresis 22:1616–1626CrossRefPubMedGoogle Scholar
  21. 21.
    Veeser S, Dunn MJ, Yang GZ (2001) Multiresolution image registration for two-dimensional gel electrophoresis. Proteomics 1:856–870CrossRefPubMedGoogle Scholar
  22. 22.
    Sorzano CO, Arganda-Carreras I, Thevenaz P, Beloso A, Morales G, Valdes I, Perez-Garcia C, Castillo C, Garrido E, Unser M (2008) Elastic image registration of 2-D gels for differential and repeatability studies. Proteomics 8:62–65CrossRefPubMedGoogle Scholar
  23. 23.
    Daszykowski M, Faergestad EM, Grove H, Martens H, Walczak B (2009) Matching 2D gel electrophoresis images with Matlab ‘Image Processing Toolbox’. Chemom Intell Lab Syst 96:188–195CrossRefGoogle Scholar
  24. 24.
    Dowsey AW, English J, Pennington K, Cotter D, Stuehler K, Marcus K, Meyer HE, Dunn MJ, Yang GZ (2006) Examination of 2-DE in the Human Proteome Organisation Brain Proteome Project pilot studies with the new RAIN gel matching technique. Proteomics 6:5030–5047CrossRefPubMedGoogle Scholar
  25. 25.
    Potra FA, Liu X, Seillier-Moiseiwitsch F, Roy A, Hang Y, Marten MR, Raman B, Whisnant C (2006) Protein image alignment via piecewise affine transformations. J Comput Biol 13:614–630CrossRefPubMedGoogle Scholar
  26. 26.
    Xin HM, Zhu Y (2009) Multiple information-based spot matching method for 2-DE images. Electrophoresis 30:2477–2480CrossRefPubMedGoogle Scholar
  27. 27.
    Noma A, Pardo A, Cesar RM (2011) Structural matching of 2D electrophoresis gels using deformed graphs. Pattern Recogn Lett 32:3–11CrossRefGoogle Scholar
  28. 28.
    Rogers M, Graham J (2007) Robust and accurate registration of 2-D electrophoresis gels using point-matching. IEEE Trans Image Process 16:624–635CrossRefPubMedGoogle Scholar
  29. 29.
    Marengo E, Robotti E, Cecconi D, Hamdan M, Scarpa A, Righetti PG (2004) Identification of the regulatory proteins in human pancreatic cancers treated with Trichostatin-A by 2D-PAGE maps and Multivariate Statistical Analysis. Anal Bioanal Chem 379(7-8):992–1003CrossRefPubMedGoogle Scholar
  30. 30.
    Marengo E, Robotti E, Bobba M, Liparota MC, Rustichelli C, Zamò A, Chilosi M, Righetti PG (2006) Multivariate statistical tools applied to the characterisation of the proteomic profiles of two human lymphoma cell lines by two-dimensional gel electrophoresis. Electrophoresis 27(2):484–494CrossRefPubMedGoogle Scholar
  31. 31.
    Marengo E, Robotti E, Bobba M, Milli A, Campostrini N, Righetti SC, Cecconi D, Righetti PG (2008) Application of Partial Least Squares Discriminant Analysis and variable selection procedures: a 2D-PAGE Proteomic Study. Anal Bioanal Chem 390(5):1327–1342CrossRefPubMedGoogle Scholar
  32. 32.
    Robotti E, Demartini M, Gosetti F, Calabrese G, Marengo E (2011) Development of a classification and ranking method for the identification of possible biomarkers in two-dimensional gel-electrophoresis based on Principal Component Analysis and variable selection procedures. Mol Biosyst 7(3):677–686CrossRefPubMedGoogle Scholar
  33. 33.
    Negri AS, Robotti E, Prinsi B, Espen L, Marengo E (2011) Proteins involved in biotic and abiotic stress responses as the most significant biomarkers in the ripening of Pinot Noir skins. Funct Integr Genomics 11(2):341–355CrossRefPubMedGoogle Scholar
  34. 34.
    Polati R, Menini M, Robotti E, Millioni R, Marengo E, Novelli E, Balzan S, Cecconi D (2012) Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged aging. Food Chem 135(3):2052–2069CrossRefPubMedGoogle Scholar
  35. 35.
    Marengo E, Robotti E, Bobba M (2008) 2D-PAGE Maps Analysis. In: Vlahou A (ed) Clinical proteomics: methods and protocols, vol 428, Methods in molecular biology. Humana Press, Totowa, NJ, pp 291–325CrossRefGoogle Scholar
  36. 36.
    Marengo E, Robotti E, Righetti PG, Campostrini N, Pascali J, Ponzoni M, Hamdan M, Astner H (2004) Study of Proteomic changes associated with healthy and tumoral murine samples in Neuroblastoma by Principal Component Analysis and classification methods. Clin Chim Acta 345(1-2):55–67CrossRefPubMedGoogle Scholar
  37. 37.
    Marengo E, Robotti E, Gianotti V, Righetti PG, Cecconi D, Domenici E (2003) A new integrated statistical approach to the diagnostic use of proteomic two-dimensional maps. Electrophoresis 24(1-2):225–236CrossRefPubMedGoogle Scholar
  38. 38.
    Marengo E, Robotti E, Righetti PG, Antonucci F (2003) New approach based on fuzzy logic and Principal Component Analysis for the classification of two-dimensional maps in health and disease: application to lymphomas. J Chromatogr A 1004(1-2):13–28CrossRefPubMedGoogle Scholar
  39. 39.
    Marengo E, Bobba M, Liparota MC, Robotti E, Righetti PG (2005) Use of Legendre Moments for the Fast Comparison of two-dimensional polyacrylamide gel electrophoresis Maps Images. J Chromatogr A 1096(1-2):86–91CrossRefPubMedGoogle Scholar
  40. 40.
    Marengo E, Robotti E, Bobba M, Demartini M, Righetti PG (2008) A new method for comparing 2D-PAGE maps based on the computation of Zernike moments and multivariate statistical tools. Anal Bioanal Chem 391(4):1163–1173CrossRefPubMedGoogle Scholar
  41. 41.
    Marengo E, Cocchi M, Demartini M, Robotti E, Bobba M, Righetti PG (2011) Investigation of the applicability of Zernike moments to the classification of SDS 2D-PAGE maps. Anal Bioanal Chem 400(5):1419–1431CrossRefPubMedGoogle Scholar
  42. 42.
    Carpentier S, Panis B, Swennen R, Lammertyn J (2008) Finding the significant markers: statistical analysis of proteomic data. In: Vlahou A (ed) Clinical proteomics, vol 428, Methods in molecular biology. Humana Press, Totowa, NJ, pp 327–347CrossRefGoogle Scholar
  43. 43.
    Jacobsen S, Grove H, Jensen KN, Sorensen HA, Jessen F, Hollung K, Uhlen AK, Jorgensen BM, Faergestad EM, Sondergaard I (2007) Multivariate analysis of 2-DE protein patterns—practical approaches. Electrophoresis 28:1289–1299CrossRefPubMedGoogle Scholar
  44. 44.
    Faergestad EM, Rye MB, Nhek S, Hollung K, Grove H (2011) The use of chemometrics to analyse protein patterns from gel electrophoresis. Acta Chromatogr 23:1–40CrossRefGoogle Scholar
  45. 45.
    Grove H, Jorgensen BM, Jessen F, Sondergaard I, Jacobsen S, Hollung K, Indahl U, Faergestad EM (2008) Combination of statistical approaches for analysis of 2-DE data gives complementary results. J Proteome Res 7(12):5119–5124CrossRefPubMedGoogle Scholar
  46. 46.
    Bandow JE, Baker JD, Berth M, Painter C, Sepulveda OJ, Clark KA, Kilty I, VanBogelen RA (2008) Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies—COPD biomarker discovery study. Proteomics 8:3030–3041CrossRefPubMedGoogle Scholar
  47. 47.
    Rye MB, Faergestad EM, Alsberg BK (2008) A new method for assigning common spot boundaries for multiple gels in two-dimensional gel electrophoresis. Electrophoresis 29:1359–1368CrossRefPubMedGoogle Scholar
  48. 48.
    Faergestad EM, Rye M, Walczak B, Gidskehaug L, Wold JP, Grove H, Jia X, Hollung K, Indahl UG, Westad F, van den Berg F, Martens H (2007) Pixel-based analysis of multiple images for the identification of changes: a novel approach applied to unravel proteome patterns [corrected] of 2-D electrophoresis gel images. Proteomics 7:3450–3461CrossRefPubMedGoogle Scholar
  49. 49.
    Rye MB, Faergestad EM, Martens H, Wold JP, Alsberg BK (2008) An improved pixel-based approach for analyzing images in two-dimensional gel electrophoresis. Electrophoresis 29:1382–1393CrossRefPubMedGoogle Scholar
  50. 50.
    Van Belle W, Anensen N, Haaland I, Bruserud O, Hogda KA, Gjertsen BT (2006) Correlation analysis of two-dimensional gel electrophoretic protein patterns and biological variables. BMC Bioinformatics 7:198PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Daszykowski M, Stanimirova I, Bodzon-Kulakowska A, Silberring J, Lubec G, Walczak B (2007) Start-to-end processing of two-dimensional gel electrophoretic images. J Chromatogr A 1158:306–317CrossRefPubMedGoogle Scholar
  52. 52.
    Wheelock AM, Buckpitt AR (2005) Software-induced variance in two-dimensional gel electrophoresis image analysis. Electrophoresis 26:4508–4520CrossRefPubMedGoogle Scholar
  53. 53.
    Dowsey AW, English JA, Lisacek F, Morris JS, Yang GZ, Dunn MJ (2010) Image analysis tools and emerging algorithms for expression proteomics. Proteomics 10:4226–4257PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Chang J, Van Remmen H, Ward WF, Regnier FE, Richardson A, Cornell J (2004) Processing of data generated by 2-dimensional gel electrophoresis for statistical analysis: missing data, normalization, and statistics. J Proteome Res 3:1210–1218CrossRefPubMedGoogle Scholar
  55. 55.
    Burstin J, Zivy M, Devienne D, Damerval C (1993) Analysis of scaling methods to minimize experimental variations in 2-dimensional electrophoresis quantitative data - application to the comparison of maize inbred lines. Electrophoresis 14:1067–1073CrossRefPubMedGoogle Scholar
  56. 56.
    Appel RD, Vargas JR, Palagi PM, Walther D, Hochstrasser DF (1997) Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms. Electrophoresis 18:2735–2748CrossRefPubMedGoogle Scholar
  57. 57.
    Lemkin PF, Lipkin LE (1981) Gellab—a computer-system for 2d-gel electrophoresis analysis. 1. Segmentation of spots and system preliminaries. Comput Biomed Res 14:272–297CrossRefPubMedGoogle Scholar
  58. 58.
    Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  59. 59.
    Michalis A, Savelonas EA, Mylona DM (2012) Unsupervised 2D gel electrophoresis image segmentation based on active contours. Pattern Recog 45(2):720–731CrossRefGoogle Scholar
  60. 60.
    Pizer SM, Amburn EP, Austin JD (1987) Adaptive histogram equalization and its variations. Comput Vision Graph Image Process 39:355–368CrossRefGoogle Scholar
  61. 61.
    Pisano ED, Zong S, Hemminger BM, DeLuca M, Johnston RE, Muller K, Braeuning MP, Pizer SM (1998) Contrast limited adaptive histogram equalization image processing to improve the detection of simulated speculations in dense mammograms. J Digit Imaging 11:193–200PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Merril CR, Creed GJ, Joy J, Olson AD (1993) Identification and use of constitutive proteins for the normalization of high resolution electrophoretograms. Appl Theor Electrophor 3:329–333PubMedGoogle Scholar
  63. 63.
    Daszykowski M, Wrobel MS, Bierczynska-Krzysik A, Silberring J, Lubec G, Walczak B (2009) Automatic preprocessing of electrophoretic images. Chemometr Intell Lab Syst 97:132–140CrossRefGoogle Scholar
  64. 64.
    Keeping AJ, Collins RA (2011) Data variance and statistical significance in 2D-gel electrophoresis and DIGE experiments: comparison of the effects of normalization methods. J Proteome Res 10:1353–1360CrossRefPubMedGoogle Scholar
  65. 65.
    Taylor J, Giometti CS (1992) Use of principal components analysis for mutation detection with two-dimensional electrophoresis protein separations. Electrophoresis 13(3):162–168CrossRefPubMedGoogle Scholar
  66. 66.
    Smales CM, Birch JR, Racher AJ, Marshall CT, James DC (2003) Evaluation of individual protein errors in silver-stained two-dimensional gels. Biochem Biophys Res Commun 306:1050–1055CrossRefPubMedGoogle Scholar
  67. 67.
    Almeida JS, Stanislaus R, Krug E, Arthur JM (2005) Normalization and analysis of residual variation in two-dimensional gel electrophoresis for quantitative differential proteomics. Proteomics 5:1242–1249CrossRefPubMedGoogle Scholar
  68. 68.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMedGoogle Scholar
  69. 69.
    Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Øye OK, Jørgensen KM, Hjelle SM, Sulen A, Ulvang DM, Gjertsen BT (2013) Gel2DE - a software tool for correlation analysis of 2D gel electrophoresis data. BMC Bioinformatics 14:215–219PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077CrossRefPubMedGoogle Scholar
  72. 72.
    Krogh M, Liu Y, Waldemarson S, Valastro B, James P (2007) Analysis of DIGE data using a linear mixed model allowing for protein-specific dye effects. Proteomics 7:4235–4244CrossRefPubMedGoogle Scholar
  73. 73.
    Kreil DP, Karp NA, Lilley KS (2004) DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics 20:2026–2034CrossRefPubMedGoogle Scholar
  74. 74.
    Kultima K, Scholz B, Alm H, Skold K, Svensson M, Crossman AR, Bezard E, Andren PE, Lonnstedt I (2006) Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis: a proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson’s disease using DIGE. BMC Bioinformatics 7(1):475PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Jacoby WG (2000) Loess: a nonparametric, graphical tool for depicting relationships between variables. Elect Stud 19:577–613CrossRefGoogle Scholar
  76. 76.
    Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836CrossRefGoogle Scholar
  77. 77.
    Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610CrossRefGoogle Scholar
  78. 78.
    Berger JA, Hautaniemi S, Jarvinen AK, Edgren H, Mitra SK, Astola J (2004) Optimized LOWESS normalization parameter selection for DNA microarray data. BMC Bioinformatics 5:194PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Fodor IK, Nelson DO, Alegria-Hartman M, Robbins K, Langlois RG, Turteltaub KW, Corzett TH, McCutchen-Maloney SL (2005) Statistical challenges in the analysis of two-dimensional difference gel electrophoresis experiments using DeCyder(TM). Bioinformatics 21:3733–3740CrossRefPubMedGoogle Scholar
  80. 80.
    Cleveland WS, Grosse E, Shyu WM (1992) Chapter 8: statistical models in S. In: Chambers JM, Hastie TJ (eds) Local regression models. Wadsworth & Brooks/Cole, Pacific GroveGoogle Scholar
  81. 81.
    Team RDC (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org
  82. 82.
    Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3Google Scholar
  83. 83.
    Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31(4):265–273CrossRefPubMedGoogle Scholar
  84. 84.
    Karp NA, Kreil DP, Lilley KS (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4(5):1421–1432CrossRefPubMedGoogle Scholar
  85. 85.
    Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104CrossRefPubMedGoogle Scholar
  86. 86.
    Astrand M (2003) Contrast normalization of oligonucleotide arrays. J Comput Biol 10(1):95–102CrossRefPubMedGoogle Scholar
  87. 87.
    Dudoit S, Yang YH (2002) Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data. In: Parmigiani G, Garrett ES, Irizarry RA, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Sciences and Technological InnovationUniversity of Piemonte OrientaleAlessandriaItaly

Personalised recommendations