Comparative Evaluation of Software Features and Performances

  • Daniela CecconiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1384)


Analysis of two-dimensional gel images is a crucial step for the determination of changes in the protein expression, but at present, it still represents one of the bottlenecks in 2-DE studies. Over the years, different commercial and academic software packages have been developed for the analysis of 2-DE images. Each of these shows different advantageous characteristics in terms of quality of analysis. In this chapter, the characteristics of the different commercial software packages are compared in order to evaluate their main features and performances.

Key words

Software packages Spot detection Warping Gel matching Data analysis 


  1. 1.
    Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26(3):231–243PubMedGoogle Scholar
  2. 2.
    O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021PubMedCentralPubMedGoogle Scholar
  3. 3.
    Millioni R, Puricelli L, Sbrignadello S, Iori E, Murphy E, Tessari P (2012) Operator- and software-related post-experimental variability and source of error in 2-DE analysis. Amino Acids 42(5):1583–1590CrossRefPubMedGoogle Scholar
  4. 4.
    Raman B, Cheung A, Marten MR (2002) Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie. Electrophoresis 23(14):2194–2202CrossRefPubMedGoogle Scholar
  5. 5.
    Nishihara JC, Champion KM (2002) Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis 23(14):2203–2215CrossRefPubMedGoogle Scholar
  6. 6.
    Rosengren AT, Salmi JM, Aittokallio T, Westerholm J, Lahesmaa R, Nyman TA, Nevalainen OS (2003) Comparison of PDQuest and Progenesis software packages in the analysis of two-dimensional electrophoresis gels. Proteomics 3(10):1936–1946CrossRefPubMedGoogle Scholar
  7. 7.
    Wheelock AM, Buckpitt AR (2005) Software-induced variance in two-dimensional gel electrophoresis image analysis. Electrophoresis 26(23):4508–4520CrossRefPubMedGoogle Scholar
  8. 8.
    Arora PS, Yamagiwa H, Srivastava A, Bolander ME, Sarkar G (2005) Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease. J Orthop Sci 10(2):160–166CrossRefPubMedGoogle Scholar
  9. 9.
    Karp NA, Feret R, Rubtsov DV, Lilley KS (2008) Comparison of DIGE and post-stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics. Proteomics 8(5):948–960CrossRefPubMedGoogle Scholar
  10. 10.
    Clark BN, Gutstein HB (2008) The myth of automated, high-throughput two-dimensional gel analysis. Proteomics 8(6):1197–1203CrossRefPubMedGoogle Scholar
  11. 11.
    Kang Y, Techanukul T, Mantalaris A, Nagy JM (2009) Comparison of three commercially available DIGE analysis software packages: minimal user intervention in gel-based proteomics. J Proteome Res 8(2):1077–1084CrossRefPubMedGoogle Scholar
  12. 12.
    Millioni R, Miuzzo M, Sbrignadello S, Murphy E, Puricelli L, Tura A, Bertacco E, Rattazzi M, Iori E, Tessari P (2010) Delta2D and Proteomweaver: performance evaluation of two different approaches for 2-DE analysis. Electrophoresis 31(8):1311–1317CrossRefPubMedGoogle Scholar
  13. 13.
    Mahon P, Dupree P (2001) Quantitative and reproducible two-dimensional gel analysis using Phoretix 2D Full. Electrophoresis 22(10):2075–2085CrossRefPubMedGoogle Scholar
  14. 14.
    Aittokallio T, Salmi J, Nyman TA, Nevalainen OS (2005) Geometrical distortions in two-dimensional gels: applicable correction methods. J Chromatogr B Analyt Technol Biomed Life Sci 815(1–2):25–37CrossRefPubMedGoogle Scholar
  15. 15.
    Rogers M, Graham J, Tonge RP (2003) Using statistical image models for objective evaluation of spot detection in two-dimensional gels. Proteomics 3(6):879–886CrossRefPubMedGoogle Scholar
  16. 16.
    Tsakanikas P, Manolakos ES (2009) Improving 2-DE gel image denoising using contourlets. Proteomics 9(15):3877–3888CrossRefPubMedGoogle Scholar
  17. 17.
    Cannistraci CV, Montevecchi FM, Alessio M (2009) Median-modified Wiener filter provides efficient denoising, preserving spot edge and morphology in 2-DE image processing. Proteomics 9(21):4908–4919CrossRefPubMedGoogle Scholar
  18. 18.
    Silva E, O’Gorman M, Becker S, Auer G, Eklund A, Grunewald J, Wheelock AM (2010) In the eye of the beholder: does the master see the SameSpots as the novice? J Proteome Res 9(3):1522–1532CrossRefPubMedGoogle Scholar
  19. 19.
    Rogers M, Graham J, Tonge RP (2003) Statistical models of shape for the analysis of protein spots in two-dimensional electrophoresis gel images. Proteomics 3(6):887–896CrossRefPubMedGoogle Scholar
  20. 20.
    Wheelock åM, Wheelock CE (2008) Bioinformatics in gel-based proteomics. In: Rakwal R, Agarwal GK (eds) Plant proteomics: technologies, strategies, and applications. Wiley, Hoboken, NJGoogle Scholar
  21. 21.
    Luhn S, Berth M, Hecker M, Bernhardt J (2003) Using standard positions and image fusion to create proteome maps from collections of two-dimensional gel electrophoresis images. Proteomics 3(7):1117–1127CrossRefPubMedGoogle Scholar
  22. 22.
    Valledor L, Jorrin J (2011) Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74(1):1–18CrossRefPubMedGoogle Scholar
  23. 23.
    Zellner M, Graf A, Zehetmayer S, Winkler W, Staes A, Gevaert K, Vandekerckhove J, Marchetti-Deschmann M, Miller I, Bauer P, Allmaier G, Oehler R (2012) How many spots with missing values can be tolerated in quantitative two-dimensional gel electrophoresis when applying univariate statistics? J Proteomics 75(6):1792–1802CrossRefPubMedGoogle Scholar
  24. 24.
    Faergestad EM, Rye M, Walczak B, Gidskehaug L, Wold JP, Grove H, Jia X, Hollung K, Indahl UG, Westad F, van den Berg F, Martens H (2007) Pixel-based analysis of multiple images for the identification of changes: a novel approach applied to unravel proteome patterns [corrected] of 2-D electrophoresis gel images. Proteomics 7(19):3450–3461CrossRefPubMedGoogle Scholar
  25. 25.
    Dowsey AW, English J, Pennington K, Cotter D, Stuehler K, Marcus K, Meyer HE, Dunn MJ, Yang GZ (2006) Examination of 2-DE in the Human Proteome Organisation Brain Proteome Project pilot studies with the new RAIN gel matching technique. Proteomics 6(18):5030–5047CrossRefPubMedGoogle Scholar
  26. 26.
    Marengo E, Robotti E, Bobba M, Milli A, Campostrini N, Righetti SC, Cecconi D, Righetti PG (2008) Application of partial least squares discriminant analysis and variable selection procedures: a 2D-PAGE proteomic study. Anal Bioanal Chem 390(5):1327–1342CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Mass Spectrometry & Proteomics Lab, Department of BiotechnologyUniversity of VeronaVeronaItaly

Personalised recommendations