Advertisement

Quantification of Hydroxychloroquine in Blood Using Turbulent Flow Liquid Chromatography-Tandem Mass Spectrometry (TFLC-MS/MS)

  • Allison B. Chambliss
  • Anna K. Füzéry
  • William A. ClarkeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1383)

Abstract

Hydroxychloroquine (HQ) is used routinely in the treatment of autoimmune disorders such as rheumatoid arthritis and lupus erythematosus. Issues such as marked pharmacokinetic variability and patient non-compliance make therapeutic drug monitoring of HQ a useful tool for management of patients taking this drug. Quantitative measurements of HQ may aid in identifying poor efficacy as well as provide reliable information to distinguish patient non-compliance from refractory disease. We describe a rapid 7-min assay for the accurate and precise measurement of HQ concentrations in 100 μL samples of human blood using turbulent flow liquid chromatography coupled to tandem mass spectrometry. HQ is isolated from EDTA whole blood after a simple extraction with its deuterated analog, hydroxychloroquine-d4, in 0.33 M perchloric acid. Samples are then centrifuged and injected onto the TFLC-MS/MS system. Quantification is performed using a nine-point calibration curve that is linear over a wide range (15.7–4000 ng/mL) with precisions of <5 %.

Key words

Hydroxychloroquine Therapeutic drug monitoring Turbulent flow liquid chromatography Tandem mass spectrometry Blood Quantification 

References

  1. 1.
    Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y (2012) Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 42(2):145–153. doi: 10.1007/s12016-010-8243-x CrossRefPubMedGoogle Scholar
  2. 2.
    Tett SE, Cutler DJ, Day RO, Brown KF (1989) Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br J Clin Pharmacol 27(6):771–779PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Costedoat-Chalumeau N, Amoura Z, Hulot JS, Hammoud HA, Aymard G, Cacoub P, Frances C, Wechsler B, du Huong LT, Ghillani P, Musset L, Lechat P, Piette JC (2006) Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with systemic lupus erythematosus. Arthritis Rheum 54(10):3284–3290. doi: 10.1002/art.22156 CrossRefPubMedGoogle Scholar
  4. 4.
    Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J, Dietz F, Ettlinger R, Golden HE, Lindsley H, McLaughlin GE, Moreland LW, Roberts WN, Rooney TW, Rothschild B, Sack M, Sebba AI, Weisman M, Welch KE, Yocum D, Furst DE (2002) Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum 46(6):1460–1469. doi: 10.1002/art.10307 CrossRefPubMedGoogle Scholar
  5. 5.
    Frances C, Cosnes A, Duhaut P, Zahr N, Soutou B, Ingen-Housz-Oro S, Bessis D, Chevrant-Breton J, Cordel N, Lipsker D, Costedoat-Chalumeau N (2012) Low blood concentration of hydroxychloroquine in patients with refractory cutaneous lupus erythematosus: a French multicenter prospective study. Arch Dermatol 148(4):479–484. doi: 10.1001/archdermatol.2011.2558 CrossRefPubMedGoogle Scholar
  6. 6.
    Brown RR, Stroshane RM, Benziger DP (1986) High-performance liquid chromatographic assay for hydroxychloroquine and three of its major metabolites, desethylhydroxychloroquine, desethylchloroquine and bidesethylchloroquine, in human plasma. J Chromatogr 377:454–459CrossRefPubMedGoogle Scholar
  7. 7.
    Tett SE, Cutler DJ, Brown KF (1985) High-performance liquid chromatographic assay for hydroxychloroquine and metabolites in blood and plasma, using a stationary phase of poly(styrene divinylbenzene) and a mobile phase at pH 11, with fluorimetric detection. J Chromatogr 344:241–248CrossRefPubMedGoogle Scholar
  8. 8.
    Wang LZ, Ong RY, Chin TM, Thuya WL, Wan SC, Wong AL, Chan SY, Ho PC, Goh BC (2012) Method development and validation for rapid quantification of hydroxychloroquine in human blood using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 61:86–92. doi: 10.1016/j.jpba.2011.11.034 CrossRefPubMedGoogle Scholar
  9. 9.
    Fuzery AK, Breaud AR, Emezienna N, Schools S, Clarke WA (2013) A rapid and reliable method for the quantitation of hydroxychloroquine in serum using turbulent flow liquid chromatography-tandem mass spectrometry. Clin Chim Acta 421:79–84. doi: 10.1016/j.cca.2013.02.018 CrossRefPubMedGoogle Scholar
  10. 10.
    Tett SE, Cutler DJ, Day RO, Brown KF (1988) A dose-ranging study of the pharmacokinetics of hydroxy-chloroquine following intravenous administration to healthy volunteers. Br J Clin Pharmacol 26(3):303–313PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Allison B. Chambliss
    • 1
  • Anna K. Füzéry
    • 1
  • William A. Clarke
    • 1
    Email author
  1. 1.Department of Pathology - Clinical ChemistryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations