Single-Nucleotide Polymorphism to Associate Cancer Risk

  • Victoria Shaw
  • Katie Bullock
  • William GreenhalfEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1381)


Genetic heterogeneity explains variation in predisposition for cancer. Whole-genome analysis allows risk to be quantified, giving better targeted screening and quantification of the personalized risk posed by environmental factors. Array-based approaches to whole-genome analysis are rapidly being overtaken by next-generation sequencing (NGS). In this review the different platforms currently available for NGS are compared and the opportunities and risks of this approach are discussed: including the informatics packages required and the ethical issues. Methods applicable to the personal genome machine (PGM) are given as an example of workflows.

Key words

Single-nucleotide polymorphism (SNP) Next Generation Sequencing (NGS) 


  1. 1.
    Mateu E, Sanchez F, Najera C et al (1997) Genetics of retinoblastoma: a study. Cancer Genet Cytogenet 95(1):40–50CrossRefPubMedGoogle Scholar
  2. 2.
    Kartheuser A, West S, Walon C et al (1995) The genetic background of familial adenomatous polyposis. Linkage analysis, the APC gene identification and mutation screening. Acta Gastro-Enterologica Belgica 58(5–6):433–451PubMedGoogle Scholar
  3. 3.
    Kohonencorish MRJ, Doe WF, Stjohn DJB, Macrae FA (1995) Chromosome 2p linkage analysis in hereditary nonpolyposis colon-cancer. J Gastroenterol Hepatol 10(1):76–80CrossRefGoogle Scholar
  4. 4.
    Froggatt NJ, Koch J, Davies R et al (1995) Genetic-linkage analysis in hereditary nonpolyposis colon-cancer syndrome. J Med Genet 32(5):352–357PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Green RC, Narod SA, Morasse J et al (1994) Hereditary nonpolyposis colon-cancer—analysis of linkage to 2p15-16 places the Coca1 locus telomeric to D2s123 and reveals genetic-heterogeneity in 7 Canadian families. Am J Hum Genet 54(6):1067–1077PubMedCentralPubMedGoogle Scholar
  6. 6.
    Nakagawa H, Koyama K, Tanaka T et al (1998) Localization of the gene responsible for Peutz-Jeghers syndrome within a 6-cM region of chromosome 19p13.3. Hum Genet 102(2):203–206CrossRefPubMedGoogle Scholar
  7. 7.
    Mehenni H, Blouin JL, Radhakrishna U et al (1997) Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet 61(6):1327–1334PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN (1998) Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62(6):1425–1438PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Bonadona V, Lasset C (2003) Inherited predisposition to breast cancer: after the BRCA1 and BRCA2 genes, what next? Bull Cancer 90(7):587–594PubMedGoogle Scholar
  10. 10.
    Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237CrossRefPubMedGoogle Scholar
  11. 11.
    Nicolas P, Sun F, Li LM (2006) A model-based approach to selection of tag SNPs. BMC Bioinformatics 7:303PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Wheeler DA (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876CrossRefPubMedGoogle Scholar
  13. 13.
    Sheridan C (2014) Illumina claims $1,000 genome win. Nat Biotechnol 32(2):115CrossRefPubMedGoogle Scholar
  14. 14.
    Hoffman S, Podgurski A (2013) The use and misuse of biomedical data: is bigger really better? Am J Law Med 39(4):497–538PubMedGoogle Scholar
  15. 15.
    Fordyce SL, Mogensen HS, Borsting C et al (2015) Second-generation sequencing of forensic STRs using the Ion Torrent HID STR 10-plex and the Ion PGM. Forensic Sci Int Genet 14:132–140CrossRefPubMedGoogle Scholar
  16. 16.
    Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y (2014) Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genomics 15:244PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Vancampenhout K, Caljon B, Spits C et al (2014) A bumpy ride on the diagnostic bench of massive parallel sequencing, the case of the mitochondrial genome. PLoS One 9(11), e112950PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Song S, Nones K, Miller D et al (2012) qpure: a tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PLoS One 7(9), e45835PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42(14):8845–8860PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Trombetta JJ, Gennert D, Lu D, Satija R, Shalek AK, Regev A (2014) Preparation of single-cell RNA-Seq libraries for next generation sequencing. Curr Protoc Mol Biol 107:4.22.1–4.22.17CrossRefGoogle Scholar
  22. 22.
    Streets AM, Zhang X, Cao C et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A 111(19):7048–7053PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Korfhage C, Fisch E, Fricke E, Baedker S, Loeffert D (2013) Whole-genome amplification of single-cell genomes for next-generation sequencing. Curr Protoc Mol Biol 104:Unit 7.14PubMedGoogle Scholar
  24. 24.
    Kim KI, Simon R (2014) Using single cell sequencing data to model the evolutionary history of a tumor. BMC Bioinformatics 15:27PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Kohler GA, Lau PC (2013) Preface. Genomics, microbiomes, single cell analysis and next-generation sequencing. J Microbiol Methods 95(3):400CrossRefPubMedGoogle Scholar
  26. 26.
    Potter NE, Ermini L, Papaemmanuil E et al (2013) Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res 23(12):2115–2125PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630CrossRefPubMedGoogle Scholar
  28. 28.
    Shirai M, Taniguchi T, Kambara H (2014) Emerging applications of single-cell diagnostics. Top Curr Chem 336:99–116CrossRefPubMedGoogle Scholar
  29. 29.
    Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428CrossRefPubMedGoogle Scholar
  30. 30.
    Yilmaz S, Singh AK (2012) Single cell genome sequencing. Curr Opin Biotechnol 23(3):437–443PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3(5):31PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Leung ML, Wang Y, Waters J, Navin NE (2015) SNES: single nucleus exome sequencing. Genome Biol 16(1):55PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Hittelman A, Sridharan S, Roy R et al (2007) Evaluation of whole genome amplification protocols for array and oligonucleotide CGH. Diagn Mol Pathol 16(4):198–206CrossRefPubMedGoogle Scholar
  35. 35.
    Brazma A (2009) Minimum information about a microarray experiment (MIAME)—successes, failures, challenges. ScientificWorldJournal 9:420–423CrossRefPubMedGoogle Scholar
  36. 36.
    Masca N, Burton PR, Sheehan NA (2011) Participant identification in genetic association studies: improved methods and practical implications. Int J Epidemiol 40(6):1629–1642PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Suh KS, Sarojini S, Youssif M et al (2013) Tissue banking, bioinformatics, and electronic medical records: the front-end requirements for personalized medicine. J Oncol 2013:368751PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Dove ES, Joly Y, Tasse AM et al (2014) Genomic cloud computing: legal and ethical points to consider. Eur J Hum Genet. doi: 10.1038/ejhg.2014.196 PubMedCentralGoogle Scholar
  39. 39.
    Altmann A, Weber P, Bader D, Preuss M, Binder EB, Muller-Myhsok B (2012) A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum Genet 131(10):1541–1554CrossRefPubMedGoogle Scholar
  40. 40.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Victoria Shaw
    • 1
  • Katie Bullock
    • 1
  • William Greenhalf
    • 1
    Email author
  1. 1.NIHR Pancreatic Biomedical Research Unit, Molecular and Clinical Cancer MedicineRoyal Liverpool University HospitalLiverpoolUK

Personalised recommendations