Quantitative DNA Methylation Profiling in Cancer

  • Ole AmmerpohlEmail author
  • Andrea Haake
  • Julia Kolarova
  • Reiner Siebert
Part of the Methods in Molecular Biology book series (MIMB, volume 1381)


Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.

Key words

DNAmethylation profiling Epigenetics Bisulfite pyrosequencing 


  1. 1.
    Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9(16):2395–2402CrossRefPubMedGoogle Scholar
  2. 2.
    Brenner C, Fuks F (2006) DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol 301:45–66PubMedGoogle Scholar
  3. 3.
    Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16(3):341–350. doi: 10.1016/j.str.2008.01.004 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Gowher H, Jeltsch A (2004) Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol Ther 3(11):1062–1068CrossRefPubMedGoogle Scholar
  5. 5.
    Wigler MH (1981) The inheritance of methylation patterns in vertebrates. Cell 24(2):285–286CrossRefPubMedGoogle Scholar
  6. 6.
    Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nat Genet 10(1):20–27. doi: 10.1038/ng0595-20 CrossRefPubMedGoogle Scholar
  7. 7.
    Gama-Sosa MA, Wang RY, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of highly repeated sequences in human DNA. Nucleic Acids Res 11(10):3087–3095PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14(5):461–469. doi: 10.1016/j.gde.2004.07.006 CrossRefPubMedGoogle Scholar
  9. 9.
    Lopez-Serra L, Esteller M (2008) Proteins that bind methylated DNA and human cancer: reading the wrong words. Br J Cancer 98(12):1881–1885. doi: 10.1038/sj.bjc.6604374 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–R58. doi: 10.1093/hmg/ddi114 CrossRefPubMedGoogle Scholar
  11. 11.
    Plass C, Smiraglia DJ (2006) Genome-wide analysis of DNA methylation changes in human malignancies. Curr Top Microbiol Immunol 310:179–198PubMedGoogle Scholar
  12. 12.
    Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20(24):3139–3155. doi: 10.1038/sj.onc.1204341 CrossRefPubMedGoogle Scholar
  13. 13.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610. doi: 10.1038/nrg1655 CrossRefPubMedGoogle Scholar
  14. 14.
    Simonsson S, Gurdon JB (2005) Changing cell fate by nuclear reprogramming. Cell Cycle 4(4):513–515CrossRefPubMedGoogle Scholar
  15. 15.
    Smith SS (1991) DNA methylation in eukaryotic chromosome stability. Mol Carcinog 4(2):91–92CrossRefPubMedGoogle Scholar
  16. 16.
    Smith SS, Crocitto L (1999) DNA methylation in eukaryotic chromosome stability revisited: DNA methyltransferase in the management of DNA conformation space. Mol Carcinog 26(1):1–9CrossRefPubMedGoogle Scholar
  17. 17.
    Turek-Plewa J, Jagodzinski PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10(4):631–647PubMedGoogle Scholar
  18. 18.
    Soejima H, Wagstaff J (2005) Imprinting centers, chromatin structure, and disease. J Cell Biochem 95(2):226–233. doi: 10.1002/jcb.20443 CrossRefPubMedGoogle Scholar
  19. 19.
    Brueckner B, Kuck D, Lyko F (2007) DNA methyltransferase inhibitors for cancer therapy. Cancer J 13(1):17–22. doi: 10.1097/PPO.0b013e31803c7245 CrossRefPubMedGoogle Scholar
  20. 20.
    Ghoshal K, Bai S (2007) DNA methyltransferases as targets for cancer therapy. Drugs of Today 43(6):395–422. doi: 10.1358/dot.2007.43.6.1062666 CrossRefPubMedGoogle Scholar
  21. 21.
    Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J, Schofield PN, Reik W, Macdonald F, Maher ER (2005) Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 13(9):1025–1032. doi: 10.1038/sj.ejhg.5201463 CrossRefPubMedGoogle Scholar
  22. 22.
    Shuman C, Beckwith JB, Smith AC, Weksberg R (1993) Beckwith-Wiedemann Syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews(R). Seattle (WA),Google Scholar
  23. 23.
    Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10(6):1871–1874CrossRefPubMedGoogle Scholar
  24. 24.
    Parkinson JF, Wheeler HR, Clarkson A, McKenzie CA, Biggs MT, Little NS, Cook RJ, Messina M, Robinson BG, McDonald KL (2008) Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neurooncol 87(1):71–78. doi: 10.1007/s11060-007-9486-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Yachi K, Watanabe T, Ohta T, Fukushima T, Yoshino A, Ogino A, Katayama Y, Nagase H (2008) Relevance of MSP assay for the detection of MGMT promoter hypermethylation in glioblastomas. Int J Oncol 33(3):469–475PubMedGoogle Scholar
  26. 26.
    Mund C, Brueckner B, Lyko F (2006) Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications. Epigenetics 1(1):7–13CrossRefPubMedGoogle Scholar
  27. 27.
    Ammerpohl O, Martin-Subero JI, Richter J, Vater I, Siebert R (2009) Hunting for the 5th base: techniques for analyzing DNA methylation. Biochim Biophys Acta 1790(9):847–862. doi: 10.1016/j.bbagen.2009.02.001 CrossRefPubMedGoogle Scholar
  28. 28.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kladde MP, Xu M, Simpson RT (1999) DNA methyltransferases as probes of chromatin structure in vivo. Methods Enzymol 304:431–447CrossRefPubMedGoogle Scholar
  30. 30.
    Lutsenko E, Bhagwat AS (1999) Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. a model, its experimental support and implications. Mutat Res 437(1):11–20CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ole Ammerpohl
    • 1
    Email author
  • Andrea Haake
    • 1
  • Julia Kolarova
    • 1
  • Reiner Siebert
    • 1
  1. 1.Institute of Human GeneticsUniversity of Kiel and University Hospital Schleswig-Holstein, Campus KielKielGermany

Personalised recommendations