Tissue Microarrays

  • Ana-Maria Dancau
  • Ronald Simon
  • Martina Mirlacher
  • Guido SauterEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1381)


Modern next-generation sequencing and microarray technologies allow for the simultaneous analysis of all human genes on the DNA, RNA, miRNA, and methylation RNA level. Studies using such techniques have lead to the identification of hundreds of genes with a potential role in cancer or other diseases. The validation of all of these candidate genes requires in situ analysis of high numbers of clinical tissues samples. The tissue microarray technology greatly facilitates such analysis. In this method minute tissue samples (typically 0.6 mm in diameter) from up to 1000 different tissues can be analyzed on one microscope glass slide. All in situ methods suitable for histological studies can be applied to TMAs without major changes of protocols, including immunohistochemistry, fluorescence in situ hybridization, or RNA in situ hybridization. Because all tissues are analyzed simultaneously with the same batch of reagents, TMA studies provide an unprecedented degree of standardization, speed, and cost efficiency.

Key words

TMA Tissue microarrays High-throughput in situ analysis IHC Immunohistochemistry FISH Fluorescence in situ hybridization Translational research 


  1. 1.
    Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847CrossRefPubMedGoogle Scholar
  2. 2.
    Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59(4):803–806PubMedGoogle Scholar
  3. 3.
    Kallioniemi A (2010) DNA copy number analysis on tissue microarrays. Methods Mol Biol 664:127–134CrossRefPubMedGoogle Scholar
  4. 4.
    Veeck J, Dahl E (2010) RNA expression analysis on formalin-fixed paraffin-embedded tissues in TMA format by RNA in situ hybridization. Methods Mol Biol 664:135–150CrossRefPubMedGoogle Scholar
  5. 5.
    Simon R, Mirlacher M, Sauter G (2010) Immunohistochemical analysis of tissue microarrays. Methods Mol Biol 664:113–126CrossRefPubMedGoogle Scholar
  6. 6.
    Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81(10):1331–1338CrossRefPubMedGoogle Scholar
  7. 7.
    Tennstedt P, Koster P, Bruchmann A, Mirlacher M, Haese A, Steuber T, Sauter G, Huland H, Graefen M, Schlomm T, Minner S, Simon R (2012) The impact of the number of cores on tissue microarray studies investigating prostate cancer biomarkers. Int J Oncol 40(1):261–268PubMedGoogle Scholar
  8. 8.
    Fejzo MS, Slamon DJ (2010) Tissue microarrays from frozen tissues-OCT technique. Methods Mol Biol 664:73–80CrossRefPubMedGoogle Scholar
  9. 9.
    Hu Z, Chang E, Hodeib M (2010) An alternative technology to prepare tissue microarray using frozen tissue samples. Methods Mol Biol 664:81–91CrossRefPubMedGoogle Scholar
  10. 10.
    Datta MW, Kajdacsy-Balla AA (2010) Tissue microarrays from biopsy specimens. Methods Mol Biol 664:103–111CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao S, Natkunam Y (2010) Building “tissue” microarrays from suspension cells. Methods Mol Biol 664:93–101CrossRefPubMedGoogle Scholar
  12. 12.
    Simon R, Struckmann K, Schraml P, Wagner U, Forster T, Moch H, Fijan A, Bruderer J, Wilber K, Mihatsch MJ, Gasser T, Sauter G (2002) Amplification pattern of 12q13-q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21(16):2476–2483CrossRefPubMedGoogle Scholar
  13. 13.
    Abbott RT, Tripp S, Perkins SL, Elenitoba-Johnson KS, Lim MS (2003) Analysis of the PI-3-Kinase-PTEN-AKT pathway in human lymphoma and leukemia using a cell line microarray. Mod Pathol 16(6):607–612CrossRefPubMedGoogle Scholar
  14. 14.
    Pires AR, de Souza SR (2010) Hypodermic needle without recipient paraffin block technique. Methods Mol Biol 664:53–61CrossRefPubMedGoogle Scholar
  15. 15.
    Howat WJ, Wilson SJ (2010) Resin technologies: construction and staining of resin TMAs. Methods Mol Biol 664:63–72CrossRefPubMedGoogle Scholar
  16. 16.
    Tran TH, Lin J, Sjolund AB, Utama FE, Rui H (2010) Protocol for constructing tissue arrays by cutting edge matrix assembly. Methods Mol Biol 664:45–52CrossRefPubMedGoogle Scholar
  17. 17.
    Schoenberg Fejzo M, Slamon DJ (2001) Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am J Pathol 159(5):1645–1650PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Bertheau P, Cazals-Hatem D, Meignin V, de Roquancourt A, Verola O, Lesourd A, Sene C, Brocheriou C, Janin A (1998) Variability of immunohistochemical reactivity on stored paraffin slides. J Clin Pathol 51(5):370–374PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Jacobs TW, Prioleau JE, Stillman IE, Schnitt SJ (1996) Loss of tumor marker-immunostaining intensity on stored paraffin slides of breast cancer. J Natl Cancer Inst 88(15):1054–1059CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ana-Maria Dancau
    • 1
  • Ronald Simon
    • 1
  • Martina Mirlacher
    • 1
  • Guido Sauter
    • 1
    Email author
  1. 1.Institute of PathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations