Skip to main content

Transcriptome Sequencing for the Detection of Chimeric Transcripts

  • Protocol
Cancer Gene Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1381))

Abstract

The occurrence of chimeric transcripts has been reported in many cancer cells and seen as potential biomarkers and therapeutic targets. Modern high-throughput sequencing technologies offer a way to investigate individual chimeric transcripts and the systematic information of associated gene expressions about underlying genome structural variations and genomic interactions. The detection methods of finding chimeric transcripts from massive amount of short read sequence data are discussed here. Both assembly-based and alignment-based methods are used for the investigation of chimeric transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234):97–101. doi:10.1038/nature07638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300(5894):765–767

    Article  PubMed  Google Scholar 

  3. Barlund M, Monni O, Weaver JD, Kauraniemi P, Sauter G, Heiskanen M, Kallioniemi OP, Kallioniemi A (2002) Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer. Genes Chromosomes Cancer 35(4):311–317. doi:10.1002/gcc.10121

    Article  CAS  PubMed  Google Scholar 

  4. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7(4):233–245. doi:10.1038/nrc2091

    Article  CAS  PubMed  Google Scholar 

  5. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696. doi:10.1038/nrg2841

    Article  CAS  PubMed  Google Scholar 

  6. Kircher M, Heyn P, Kelso J (2011) Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics 12:382. doi:10.1186/1471-2164-12-382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Carrara M, Beccuti M, Lazzarato F, Cavallo F, Cordero F, Donatelli S, Calogero RA (2013) State-of-the-art fusion-finder algorithms sensitivity and specificity. Biomed Res Int 2013:340620. doi:10.1155/2013/340620

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chu HT, Hsiao WW, Chen JC, Yeh TJ, Tsai MH, Lin H, Liu YW, Lee SA, Chen CC, Tsao TT, Kao CY (2013) EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection. Bioinformatics 29(8):1004–1010. doi:10.1093/bioinformatics/btt092

    Article  CAS  PubMed  Google Scholar 

  9. Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, Rye IH, Nyberg S, Wolf M, Borresen-Dale AL, Kallioniemi O (2011) Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 12(1):R6. doi:10.1186/gb-2011-12-1-r6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kim D, Salzberg SL (2011) TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72. doi:10.1186/gb-2011-12-8-r72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21(9):1859–1875. doi:10.1093/bioinformatics/bti310

    Article  CAS  PubMed  Google Scholar 

  12. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8):1166–1167. doi:10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  13. Nicorici D, Satalan M, Edgren H, Kangaspeska S, Murumagi A, Kallioniemi O, Virtanen S, Kilkku O (2014) FusionCatcher—a tool for finding somatic fusion genes in paired-end RNA-sequencing data. bioRxiv, Nov. 2014. doi:10.1101/011650

  14. Ge H, Liu K, Juan T, Fang F, Newman M, Hoeck W (2011) FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics 27(14):1922–1928. doi:10.1093/bioinformatics/btr310

    Article  CAS  PubMed  Google Scholar 

  15. Fan X, Abbott TE, Larson D, Chen K (2014) BreakDancer—identification of genomic structural variation from paired-end read mapping. Curr Protoc Bioinformatics 2014. doi:10.1002/0471250953.bi1506s45

  16. Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, Rozowsky JS, Tewari AK, Kitabayashi N, Moss BJ, Chee MS, Demichelis F, Rubin MA, Gerstein MB (2010) FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol 11(10):R104. doi:10.1186/gb-2010-11-10-r104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18), e178. doi:10.1093/nar/gkq622

    Article  PubMed Central  PubMed  Google Scholar 

  18. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, Griffith M, Heravi Moussavi A, Senz J, Melnyk N, Pacheco M, Marra MA, Hirst M, Nielsen TO, Sahinalp SC, Huntsman D, Shah SP (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7(5):e1001138. doi:10.1371/journal.pcbi.1001138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li Y, Chien J, Smith DI, Ma J (2011) FusionHunter: identifying fusion transcripts in cancer using paired-end RNA-seq. Bioinformatics 27(12):1708–1710. doi:10.1093/bioinformatics/btr265

    Article  CAS  PubMed  Google Scholar 

  20. Asmann YW, Hossain A, Necela BM, Middha S, Kalari KR, Sun Z, Chai H-S, Williamson DW, Radisky D, Schroth GP, Kocher J-PA, Perez EA, Thompson EA (2011) A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines. Nucleic Acids Res. doi:10.1093/nar/gkr362

    PubMed Central  PubMed  Google Scholar 

  21. Iyer MK, Chinnaiyan AM, Maher CA (2011) ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27(20):2903–2904. doi:10.1093/bioinformatics/btr467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Francis RW, Thompson-Wicking K, Carter KW, Anderson D, Kees UR, Beesley AH (2012) FusionFinder: a software tool to identify expressed gene fusion candidates from RNA-Seq data. PLoS One 7(6), e39987. doi:10.1371/journal.pone.0039987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Piazza R, Pirola A, Spinelli R, Valletta S, Redaelli S, Magistroni V, Gambacorti-Passerini C (2012) FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery. Nucleic Acids Res 40(16), e123. doi:10.1093/nar/gks394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wu J, Zhang W, Huang S, He Z, Cheng Y, Wang J, Lam TW, Peng Z, Yiu SM (2013) SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads. Bioinformatics 29(23):2971–2978. doi:10.1093/bioinformatics/btt522

    Article  CAS  PubMed  Google Scholar 

  25. Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, Yu Y, Zhu D, Nickerson ML, Wan S, Liao X, Zhu X, Peng S, Li Y, Wang J, Guo G (2013) SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol 14(2):R12. doi:10.1186/gb-2013-14-2-r12

    Article  PubMed Central  PubMed  Google Scholar 

  26. Li JW, Wan R, Yu CS, Co NN, Wong N, Chan TF (2013) ViralFusionSeq: accurately discover viral integration events and reconstruct fusion transcripts at single-base resolution. Bioinformatics 29(5):649–651. doi:10.1093/bioinformatics/btt011

    Article  PubMed Central  PubMed  Google Scholar 

  27. Torres-Garcia W, Zheng S, Sivachenko A, Vegesna R, Wang Q, Yao R, Berger MF, Weinstein JN, Getz G, Verhaak RG (2014) PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30(15):2224–2226. doi:10.1093/bioinformatics/btu169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Beccuti M, Carrara M, Cordero F, Lazzarato F, Donatelli S, Nadalin F, Policriti A, Calogero RA (2014) Chimera: a Bioconductor package for secondary analysis of fusion products. Bioinformatics 30(24):3556–3557. doi:10.1093/bioinformatics/btu662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fernandez-Cuesta L, Sun R, Menon R, George J, Lorenz S, Meza-Zepeda LA, Peifer M, Plenker D, Heuckmann JM, Leenders F, Zander T, Dahmen I, Koker M, Schottle J, Ullrich RT, Altmuller J, Becker C, Nurnberg P, Seidel H, Bohm D, Goke F, Ansen S, Russell PA, Wright GM, Wainer Z, Solomon B, Petersen I, Clement JH, Sanger J, Brustugun OT, Helland A, Solberg S, Lund-Iversen M, Buettner R, Wolf J, Brambilla E, Vingron M, Perner S, Haas SA, Thomas RK (2015) Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biol 16(1):7. doi:10.1186/s13059-014-0558-0

    Article  PubMed Central  PubMed  Google Scholar 

  30. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. doi:10.1038/nbt.1883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):909–912. doi:10.1038/nmeth.1517

    Article  CAS  PubMed  Google Scholar 

  32. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092. doi:10.1093/bioinformatics/bts094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsueh-Ting Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chu, HT. (2016). Transcriptome Sequencing for the Detection of Chimeric Transcripts. In: Grützmann, R., Pilarsky, C. (eds) Cancer Gene Profiling. Methods in Molecular Biology, vol 1381. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3204-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3204-7_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3203-0

  • Online ISBN: 978-1-4939-3204-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics