Transcriptome Sequencing for the Detection of Chimeric Transcripts

  • Hsueh-Ting ChuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1381)


The occurrence of chimeric transcripts has been reported in many cancer cells and seen as potential biomarkers and therapeutic targets. Modern high-throughput sequencing technologies offer a way to investigate individual chimeric transcripts and the systematic information of associated gene expressions about underlying genome structural variations and genomic interactions. The detection methods of finding chimeric transcripts from massive amount of short read sequence data are discussed here. Both assembly-based and alignment-based methods are used for the investigation of chimeric transcripts.

Key words

Transcriptome sequencing Chimeric transcript Fusion genes Cancer genes De novo assembly 


  1. 1.
    Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234):97–101. doi: 10.1038/nature07638 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300(5894):765–767CrossRefPubMedGoogle Scholar
  3. 3.
    Barlund M, Monni O, Weaver JD, Kauraniemi P, Sauter G, Heiskanen M, Kallioniemi OP, Kallioniemi A (2002) Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer. Genes Chromosomes Cancer 35(4):311–317. doi: 10.1002/gcc.10121 CrossRefPubMedGoogle Scholar
  4. 4.
    Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7(4):233–245. doi: 10.1038/nrc2091 CrossRefPubMedGoogle Scholar
  5. 5.
    Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696. doi: 10.1038/nrg2841 CrossRefPubMedGoogle Scholar
  6. 6.
    Kircher M, Heyn P, Kelso J (2011) Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics 12:382. doi: 10.1186/1471-2164-12-382 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Carrara M, Beccuti M, Lazzarato F, Cavallo F, Cordero F, Donatelli S, Calogero RA (2013) State-of-the-art fusion-finder algorithms sensitivity and specificity. Biomed Res Int 2013:340620. doi: 10.1155/2013/340620 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Chu HT, Hsiao WW, Chen JC, Yeh TJ, Tsai MH, Lin H, Liu YW, Lee SA, Chen CC, Tsao TT, Kao CY (2013) EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection. Bioinformatics 29(8):1004–1010. doi: 10.1093/bioinformatics/btt092 CrossRefPubMedGoogle Scholar
  9. 9.
    Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, Rye IH, Nyberg S, Wolf M, Borresen-Dale AL, Kallioniemi O (2011) Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 12(1):R6. doi: 10.1186/gb-2011-12-1-r6 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kim D, Salzberg SL (2011) TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72. doi: 10.1186/gb-2011-12-8-r72 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21(9):1859–1875. doi: 10.1093/bioinformatics/bti310 CrossRefPubMedGoogle Scholar
  12. 12.
    Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8):1166–1167. doi: 10.1093/bioinformatics/bts091 CrossRefPubMedGoogle Scholar
  13. 13.
    Nicorici D, Satalan M, Edgren H, Kangaspeska S, Murumagi A, Kallioniemi O, Virtanen S, Kilkku O (2014) FusionCatcher—a tool for finding somatic fusion genes in paired-end RNA-sequencing data. bioRxiv, Nov. 2014. doi: 10.1101/011650
  14. 14.
    Ge H, Liu K, Juan T, Fang F, Newman M, Hoeck W (2011) FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics 27(14):1922–1928. doi: 10.1093/bioinformatics/btr310 CrossRefPubMedGoogle Scholar
  15. 15.
    Fan X, Abbott TE, Larson D, Chen K (2014) BreakDancer—identification of genomic structural variation from paired-end read mapping. Curr Protoc Bioinformatics 2014. doi: 10.1002/0471250953.bi1506s45
  16. 16.
    Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, Rozowsky JS, Tewari AK, Kitabayashi N, Moss BJ, Chee MS, Demichelis F, Rubin MA, Gerstein MB (2010) FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol 11(10):R104. doi: 10.1186/gb-2010-11-10-r104 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18), e178. doi: 10.1093/nar/gkq622 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, Griffith M, Heravi Moussavi A, Senz J, Melnyk N, Pacheco M, Marra MA, Hirst M, Nielsen TO, Sahinalp SC, Huntsman D, Shah SP (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7(5):e1001138. doi: 10.1371/journal.pcbi.1001138 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Li Y, Chien J, Smith DI, Ma J (2011) FusionHunter: identifying fusion transcripts in cancer using paired-end RNA-seq. Bioinformatics 27(12):1708–1710. doi: 10.1093/bioinformatics/btr265 CrossRefPubMedGoogle Scholar
  20. 20.
    Asmann YW, Hossain A, Necela BM, Middha S, Kalari KR, Sun Z, Chai H-S, Williamson DW, Radisky D, Schroth GP, Kocher J-PA, Perez EA, Thompson EA (2011) A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines. Nucleic Acids Res. doi: 10.1093/nar/gkr362 PubMedCentralPubMedGoogle Scholar
  21. 21.
    Iyer MK, Chinnaiyan AM, Maher CA (2011) ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27(20):2903–2904. doi: 10.1093/bioinformatics/btr467 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Francis RW, Thompson-Wicking K, Carter KW, Anderson D, Kees UR, Beesley AH (2012) FusionFinder: a software tool to identify expressed gene fusion candidates from RNA-Seq data. PLoS One 7(6), e39987. doi: 10.1371/journal.pone.0039987 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Piazza R, Pirola A, Spinelli R, Valletta S, Redaelli S, Magistroni V, Gambacorti-Passerini C (2012) FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery. Nucleic Acids Res 40(16), e123. doi: 10.1093/nar/gks394 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wu J, Zhang W, Huang S, He Z, Cheng Y, Wang J, Lam TW, Peng Z, Yiu SM (2013) SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads. Bioinformatics 29(23):2971–2978. doi: 10.1093/bioinformatics/btt522 CrossRefPubMedGoogle Scholar
  25. 25.
    Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, Yu Y, Zhu D, Nickerson ML, Wan S, Liao X, Zhu X, Peng S, Li Y, Wang J, Guo G (2013) SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol 14(2):R12. doi: 10.1186/gb-2013-14-2-r12 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Li JW, Wan R, Yu CS, Co NN, Wong N, Chan TF (2013) ViralFusionSeq: accurately discover viral integration events and reconstruct fusion transcripts at single-base resolution. Bioinformatics 29(5):649–651. doi: 10.1093/bioinformatics/btt011 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Torres-Garcia W, Zheng S, Sivachenko A, Vegesna R, Wang Q, Yao R, Berger MF, Weinstein JN, Getz G, Verhaak RG (2014) PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30(15):2224–2226. doi: 10.1093/bioinformatics/btu169 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Beccuti M, Carrara M, Cordero F, Lazzarato F, Donatelli S, Nadalin F, Policriti A, Calogero RA (2014) Chimera: a Bioconductor package for secondary analysis of fusion products. Bioinformatics 30(24):3556–3557. doi: 10.1093/bioinformatics/btu662 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Fernandez-Cuesta L, Sun R, Menon R, George J, Lorenz S, Meza-Zepeda LA, Peifer M, Plenker D, Heuckmann JM, Leenders F, Zander T, Dahmen I, Koker M, Schottle J, Ullrich RT, Altmuller J, Becker C, Nurnberg P, Seidel H, Bohm D, Goke F, Ansen S, Russell PA, Wright GM, Wainer Z, Solomon B, Petersen I, Clement JH, Sanger J, Brustugun OT, Helland A, Solberg S, Lund-Iversen M, Buettner R, Wolf J, Brambilla E, Vingron M, Perner S, Haas SA, Thomas RK (2015) Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biol 16(1):7. doi: 10.1186/s13059-014-0558-0 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. doi: 10.1038/nbt.1883 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):909–912. doi: 10.1038/nmeth.1517 CrossRefPubMedGoogle Scholar
  32. 32.
    Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092. doi: 10.1093/bioinformatics/bts094 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringAsia UniversityTaichung CityTaiwan
  2. 2.Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan

Personalised recommendations