Advertisement

Application of Proteomics in Cancer Biomarker Discovery: GeLC-MS/MS

  • Pedro R. CutillasEmail author
  • Tatjana Crnogorac-Jurcevic
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1381)

Abstract

Proteomic approaches are being increasingly applied to study multiple facets of healthy and diseased processes. In particular, the application of global proteome profiling in the field of oncology is already starting to shape the diagnostic, prognostic, monitoring, and therapeutic approaches. At the heart of such approaches lies a quest for clinically relevant biomarkers, particularly arising from global analyses of body fluids, as, in major part, they represent easily accessible and noninvasive matrices. A detailed protocol of one of the popular approaches for global proteome profiling, SDS-PAGE-liquid chromatography-tandem mass spectrometry or GeLC-MS/MS, and its application for biomarker discovery in urine is provided here.

Key words

Proteomics GeLC-MS/MS Biomarker discovery Body fluids 

References

  1. 1.
    Anonymous (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  2. 2.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867CrossRefPubMedGoogle Scholar
  3. 3.
    Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245CrossRefPubMedGoogle Scholar
  4. 4.
    Hortin GL, Sviridov D (2010) The dynamic range problem in the analysis of the plasma proteome. J Proteomics 73:629–636CrossRefPubMedGoogle Scholar
  5. 5.
    Tirumalai RS, Chan KC, Prieto DA et al (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096–1103CrossRefPubMedGoogle Scholar
  6. 6.
    Bence Jones H (1848) On a new substance occurring in the urine of a patient with mollities ossium. Phil Trans R Soc 138:55–62CrossRefGoogle Scholar
  7. 7.
    Kentsis A, Monigatti F, Dorff K et al (2009) Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin Appl 3:1052–1061PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Santucci L, Candiano G, Petretto A et al (2014) From hundreds to thousands: widening the normal human Urinome (1). J Proteomics 112C:53–62Google Scholar
  9. 9.
    Jia L, Zhang L, Shao C et al (2009) An attempt to understand kidney’s protein handling function by comparing plasma and urine proteomes. PLoS One 4:e5146PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Schaub S, Wilkins J, Weiler T et al (2004) Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 65:323–332CrossRefPubMedGoogle Scholar
  11. 11.
    Thongboonkerd V (2007) Practical points in urinary proteomics. J Proteome Res 6:3881–3890CrossRefPubMedGoogle Scholar
  12. 12.
    Alrawashdeh WaC-J T (2011) Biomarker discovery in biological fluids. SpringerGoogle Scholar
  13. 13.
    Cutillas PR, Norden AG, Cramer R et al (2003) Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clin Sci 104:483–490CrossRefPubMedGoogle Scholar
  14. 14.
    Quintana LF, Campistol JM, Alcolea MP et al (2009) Application of label-free quantitative peptidomics for the identification of urinary biomarkers of kidney chronic allograft dysfunction. Mol Cell Proteomics 8:1658–1673PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Shevchenko A, Wilm M, Vorm O et al (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefPubMedGoogle Scholar
  16. 16.
    Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefPubMedGoogle Scholar
  17. 17.
    Cutillas PR, Geering B, Waterfield MD et al (2005) Quantification of gel-separated proteins and their phosphorylation sites by LC-MS using unlabeled internal standards: analysis of phosphoprotein dynamics in a B cell lymphoma cell line. Mol Cell Proteomics 4:1038–1051CrossRefPubMedGoogle Scholar
  18. 18.
    Cutillas PR, Vanhaesebroeck B (2007) Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol Cell Proteomics 6:1560–1573CrossRefPubMedGoogle Scholar
  19. 19.
    Tanca A, Pagnozzi D, Burrai GP et al (2012) Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC-MS/MS and spectral counting. J Proteomics 77:561–576CrossRefPubMedGoogle Scholar
  20. 20.
    Schirle M, Heurtier MA, Kuster B (2003) Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 2:1297–1305CrossRefPubMedGoogle Scholar
  21. 21.
    Paulo JA, Kadiyala V, Banks PA et al (2012) Mass spectrometry-based (GeLC-MS/MS) comparative proteomic analysis of endoscopically (ePFT) collected pancreatic and gastroduodenal fluids. Clin Transl Gastroenterol 3:e14PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Cutillas PR, Chalkley RJ, Hansen KC et al (2004) The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol 287:F353–F364CrossRefPubMedGoogle Scholar
  23. 23.
    Beltran L, Chaussade C, Vanhaesebroeck B et al (2011) Calpain interacts with class IA phosphoinositide 3-kinases regulating their stability and signaling activity. Proc Natl Acad Sci U S A 108:16217–16222PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Radon TP, Massat NJ, Jones R et al (2015) Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin Cancer Res (in press)Google Scholar
  25. 25.
    Neuhoff V, Stamm R, Pardowitz I et al (1990) Essential problems in quantification of proteins following colloidal staining with coomassie brilliant blue dyes in polyacrylamide gels, and their solution. Electrophoresis 11:101–117CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pedro R. Cutillas
    • 1
    Email author
  • Tatjana Crnogorac-Jurcevic
    • 2
  1. 1.Centre for Haemato-Oncology, Bart Cancer InstituteQueen Mary University of LondonLondonUK
  2. 2.Molecular Oncology Centre, Bart Cancer InstituteQueen Mary University of LondonLondonUK

Personalised recommendations