Target Gene Discovery for Novel Therapeutic Agents in Cancer Treatment

  • Sanjay TiwariEmail author
  • Ole Ammerpohl
  • Holger Kalthoff
Part of the Methods in Molecular Biology book series (MIMB, volume 1381)


Target identification of novel therapeutic drugs is pivotal for the establishment of (1) new anticancer regiments, (2) to control side effects of the drugs, and (3) to identify appropriate combinations with established drugs.

Here, we describe several in vitro assays applicable to characterize different characteristics of tumor cells. Furthermore, we present a protocol for establishing a reporter gene system for in vivo imaging, allowing for the study of drug effects in small animal models.

Key words

Apoptosis Cell cycle Tumor invasion FACS In vivo imaging Fluorescence 


  1. 1.
    Ammerpohl O et al (2007) Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br J Cancer 96(1):73–81PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Orntoft TF, Petersen SE, Wolf H (1988) Dual-parameter flow cytometry of transitional cell carcinomas. Quantitation of DNA content and binding of carbohydrate ligands in cellular subpopulations. Cancer 61(5):963–970CrossRefPubMedGoogle Scholar
  3. 3.
    Asklund T et al (2004) Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 40(7):1073–1081CrossRefPubMedGoogle Scholar
  4. 4.
    Svechnikova I, Ammerpohl O, Ekstrom TJ (2007) p21waf1/Cip1 partially mediates apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 354(2):466–471CrossRefPubMedGoogle Scholar
  5. 5.
    Ammerpohl O et al (2004) HDACi phenylbutyrate increases bystander killing of HSV-tk transfected glioma cells. Biochem Biophys Res Commun 324(1):8–14CrossRefPubMedGoogle Scholar
  6. 6.
    Appelskog IB et al (2004) Histone deacetylase inhibitor 4-phenylbutyrate suppresses GAPDH mRNA expression in glioma cells. Int J Oncol 24(6):1419–1425PubMedGoogle Scholar
  7. 7.
    Tolboom TC, Huizinga TW (2007) In vitro matrigel fibroblast invasion assay. Methods Mol Med 135:413–421CrossRefPubMedGoogle Scholar
  8. 8.
    Casey RC et al (2003) Establishment of an in vitro assay to measure the invasion of ovarian carcinoma cells through mesothelial cell monolayers. Clin Exp Metastasis 20(4):343–356CrossRefPubMedGoogle Scholar
  9. 9.
    Trauzold A et al (2005) CD95 and TRAF2 promote invasiveness of pancreatic cancer cells. FASEB J 19(6):620–622PubMedGoogle Scholar
  10. 10.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634CrossRefPubMedGoogle Scholar
  11. 11.
    Weissleder R et al (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378CrossRefPubMedGoogle Scholar
  12. 12.
    Villalobos V, Naik S, Piwnica-Worms D (2007) Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annu Rev Biomed Eng 9:321–349CrossRefPubMedGoogle Scholar
  13. 13.
    Mezzanotte L et al (2014) A new multicolor bioluminescence imaging platform to investigate NF-kappaB activity and apoptosis in human breast cancer cells. PLoS One 9(1), e85550PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    O’Brien MA et al (2005) Homogeneous, bioluminescent protease assays: caspase-3 as a model. J Biomol Screen 10(2):137–148CrossRefPubMedGoogle Scholar
  15. 15.
    Bouvet M, Spernyak J, Katz MH, Mazurchuk RV, Takimoto S, Bernacki R, Rustum YM, Moossa AR, Hoffman RM (2005) High correlation of whole-body red fluorescent protein imaging and magnetic resonance imaging on an orthotopic model of pancreatic cancer. Cancer Res 65(21):9829–9833CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Radiology and Neuroradiology, Section Molecular ImagingChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Institute for Human GeneticsUniversity of Kiel and University Hospital Schleswig-HolsteinKielGermany
  3. 3.Institute for Experimental Cancer Research, Section for Molecular OncologyUniversity Hospital Schleswig-HolsteinKielGermany

Personalised recommendations