Skip to main content

Screening of Genetic Switches Based on the Twister Ribozyme Motif

  • Protocol
Nucleic Acid Aptamers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1380))

Abstract

The recent description of a new class of small endonucleolytic ribozymes termed twister opened new avenues into the development of artificial riboswitches, providing new tools for the development of artificial genetic circuits in bacteria. Here we present a method to develop new ligand-dependent riboswitches, employing the newly described catalytic motif as an expression platform in conjugation with naturally occurring or in vitro-selected aptameric domains. The twister motif is an outstandingly flexible tool for the development of highly active ribozyme-based riboswitches able to control gene expression in a ligand-dependent manner in Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferre-D'Amare AR, Scott WG (2010) Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol 2(10):a003574

    Article  PubMed Central  PubMed  Google Scholar 

  2. Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231(4745):1577–1580

    Article  CAS  PubMed  Google Scholar 

  3. Buzayan JM, Hampel A, Bruening G (1986) Nucleotide sequence and newly formed phosphodiester bond of spontaneously ligated satellite tobacco ringspot virus RNA. Nucleic Acids Res 14(24):9729–9743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sharmeen L, Kuo MY, Dinter-Gottlieb G, Taylor J (1988) Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J Virol 62(8):2674–2679

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Saville BJ, Collins RA (1990) A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61(4):685–696

    Article  CAS  PubMed  Google Scholar 

  6. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428(6980):281–286. doi:10.1038/nature02362 nature02362 (pii)

    Article  CAS  PubMed  Google Scholar 

  7. Roth A, Weinberg Z, Chen AG, Kim PB, Ames TD, Breaker RR (2014) A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol 10(1):56–60

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Wilson TJ, McPhee SA, Lilley DM (2014) Crystal structure and mechanistic investigation of the twister ribozyme. Nat Chem Biol 10:739–744

    Article  CAS  PubMed  Google Scholar 

  9. Eiler D, Wang J, Steitz TA (2014) Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc Natl Acad Sci U S A 111(36):13028–13033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ren A, Kosutic M, Rajashankar KR, Frener M, Santner T, Westhof E, Micura R, Patel DJ (2014) In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nat Commun 5:5534

    Google Scholar 

  11. Vinkenborg JL, Karnowski N, Famulok M (2011) Aptamers for allosteric regulation. Nat Chem Biol 7(8):519–527

    Article  CAS  PubMed  Google Scholar 

  12. Frommer J, Appel B, Muller S (2015) Ribozymes that can be regulated by external stimuli. Curr Opin Biotechnol 31:35–41

    Article  CAS  PubMed  Google Scholar 

  13. Berens C, Groher F, Suess B (2015) RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Biotechnol J 10(2):246–257. doi:10.1002/biot.201300498

    Article  CAS  PubMed  Google Scholar 

  14. Klauser B, Atanasov J, Siewert LK, Hartig JS (2014) Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae. ACS Synth Biol 4(5):516–525

    Google Scholar 

  15. Wieland M, Benz A, Klauser B, Hartig JS (2009) Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem Int Ed Engl 48(15):2715–2718. doi:10.1002/anie.200805311

    Article  CAS  PubMed  Google Scholar 

  16. Wieland M, Auslander D, Fussenegger M (2012) Engineering of ribozyme-based riboswitches for mammalian cells. Methods 56(3):351–357

    Article  CAS  PubMed  Google Scholar 

  17. Gu H, Furukawa K, Breaker RR (2012) Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5′-monophosphate. Anal Chem 84(11):4935–4941. doi:10.1021/ac300415k

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Klauser B, Hartig JS (2013) An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 41(10):5542–5552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nomura Y, Zhou L, Miu A, Yokobayashi Y (2013) Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2(12):684–689. doi:10.1021/sb400037a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Saragliadis A, Hartig JS (2013) Ribozyme-based transfer RNA switches for post-transcriptional control of amino acid identity in protein synthesis. J Am Chem Soc 135(22):8222–8226. doi:10.1021/ja311107p

    Article  CAS  PubMed  Google Scholar 

  21. Klauser B, Saragliadis A, Auslander S, Wieland M, Berthold MR, Hartig JS (2012) Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation. Mol Biosyst 8(9):2242–2248. doi:10.1039/c2mb25091h

    Article  CAS  PubMed  Google Scholar 

  22. Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322(5900):456–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl 47(14):2604–2607. doi:10.1002/anie.200703700

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  25. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9(11):1797–1804. doi:10.1002/cbic.200800298

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg S. Hartig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Felletti, M., Klauser, B., Hartig, J.S. (2016). Screening of Genetic Switches Based on the Twister Ribozyme Motif. In: Mayer, G. (eds) Nucleic Acid Aptamers. Methods in Molecular Biology, vol 1380. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3197-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3197-2_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3196-5

  • Online ISBN: 978-1-4939-3197-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics