Skip to main content

Techniques for Nucleic Acid Purification from Plant, Animal, and Microbial Samples

  • Protocol
Sample Preparation Techniques for Soil, Plant, and Animal Samples

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Efficient isolation of high-quality nucleic acid from sampled material is critical for the success of downstream analyses including PCR, sequencing, and molecular cloning. There are four principles that have primarily driven the innovation in nucleic acid isolation practices: efficiency of recovery, speed of processing, ease of the procedure, and the purity of the isolated product.

Nucleic acid isolation generally occurs via a two-step process: liberation of nucleic acid through cellular lysis followed by purification of the liberated nucleic acid from the lysate. Liberation can be achieved by utilizing any combination of chemical, enzymatic, and mechanical lysis methods. Purification of nucleic acid is typically performed using liquid- and solid-phase separation techniques. Phenol–chloroform extraction has been widely considered the gold standard since 1956, however, solid-phase extraction methods exist utilizing specific resins and inorganic matrices that, in the presence of certain chemical reagents, facilitate reversible nucleic acid binding.

Isolation of nucleic acids can be challenging depending on the nature of the sample. Samples like plants and microbes possess rigid cell walls that must be ruptured to ensure efficient nucleic isolation. Soil, stool, and plant samples can also contain polyphenolic compounds that can inhibit downstream analysis. Blood, plasma/serum, saliva, milk, and other biological fluids contain high levels of protein, which can inhibit nucleic acid separation. Many microbial species are refractory to most conventional lysis techniques but must be effectively lysed to ensure unbiased, accurate analysis. Qualification criteria for the isolation and purification of nucleic acids, and the obstacles presented by animal, plant, and microbial samples are described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Multiple Sclerosis Genetics Consortium (2005) A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 77:454–467

    Article  PubMed Central  Google Scholar 

  2. Deininger P (1982) Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal Biochem 129:216–223

    Article  Google Scholar 

  3. Queipo-Ortuño MI, Tena F, Colmenero JD (2008) Comparison of seven commercial DNA extraction kits for the recovery of Brucella DNA from spiked human serum samples using real-time PCR. Eur J Clin Microbiol Infect Dis 27:109–114

    Article  PubMed  Google Scholar 

  4. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717–2722

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Yoshikawa H, Dogruman-Ai F, Turk S, Kustimur S, Balaban N, Sultan N (2011) Evaluation of DNA extraction kits for molecular diagnosis of human Blastocystis subtypes from fecal samples. Parasitol Res 109:1045–1050

    Article  PubMed  Google Scholar 

  7. Petchica BA, Schulman JH (1953) The physical chemistry of haemolysis by surface-active agents. Biochem J 53:177–184

    Article  Google Scholar 

  8. Radloff R, Bauer W, Vinograd J (1967) A dye-buoyant density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci U S A 57:1514–1521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Volko EI (1946) Surface active agents in biology and medicine. Ann N Y Acad Sci 46:451–478

    Article  Google Scholar 

  10. Ingram LO (1981) Mechanism of lysis of Escherichia coli by ethanol and other chaotropic agents. J Bacteriol 146:331–336

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-Van Dillen PM, Van Der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Wiegers U, Hilz H (1971) A new method using ‘Proteinase K’ to prevent mRNA degredation during isolation from HeLa cells. Biochem Biophys Res Commun 44:513–519

    Article  CAS  PubMed  Google Scholar 

  13. Yuan S, Cohen D, Ravel J, Abdo Z, Forney L (2012) Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 7:e33865. doi:10.1371/journal.pone.0033865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Moldovan IC, Sofletea N, Curtu AL, Abrudan IV, Postolache D, Popescu F (2010) Chloroplast DNA diversity of Oak Species in Eastern Romania. Not Bot Horti Agrobot Cluj Napoca 38:302–307

    Google Scholar 

  15. Meselson M (1957) Equilibrium sedimentation of macromolecules in density gradients with application to the study of deoxyribonucleic acid & the crystal structure of N,N′-dimethyl malonamide. Ph.D. dissertation. The California Institute of Technology, Pasadena, CA

    Google Scholar 

  16. Kirby KS (1956) A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem J 64:405–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Grassman W, Deffner G (1953) Verteilungschromatographics Verhalten von Proteinen und Peptiden in phenolhaltigen lösungsmitteln. Hoppe-Seylors Z Physiol Chem 293:89–98

    Article  Google Scholar 

  18. Tan SC, Yiap BC (2009) DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol 2009, 574398. doi:10.1155/2009/574398

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sambrook J, Fritsch EF, Mantis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  20. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  PubMed  Google Scholar 

  21. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  22. Chirgwin JM, Przybyla AE, Macdonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  CAS  PubMed  Google Scholar 

  23. Price CW, Leslie DC, Landers JP (2009) Nucleic acid extraction techniques and application to the microchip. Lap Chip 9:2484–2494

    Article  CAS  Google Scholar 

  24. Kim YK, Yeo J, Kim B, Ha M, Kim VN (2012) Short structured RNAs with low GC content are selectively lost during extraction from small number of cells. Mol Cell 46:893–895

    Article  CAS  PubMed  Google Scholar 

  25. Nilsen TW ed. (2014) RNA J 20(4)

    Google Scholar 

  26. Vogelstein B, Gillespie D (1979) Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A 76:615–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Melzak KA, Sherwood CS, Turner RFB, Haynes CA (1996) Driving forces for DNA adsorption to silica in perchlorate solutions. J Colloid Interface Sci 181:635–644

    Article  CAS  Google Scholar 

  28. Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:496–504

    Google Scholar 

  29. Shih TY, Martin MA (1974) Chemical linkage of nucleic acids to neutral and phosphylated cellulose powders and isolation of specific sequences by affinity chromatography. Biochem J 13:3411–3418

    Article  CAS  Google Scholar 

  30. Su X, Comeau AM (1999) Cellulose as a matrix for nucleic acid purification. Anal Biochem 267:415–418

    Article  CAS  PubMed  Google Scholar 

  31. Nargessi RD, Pourfarzaneh M (2007) U.S. Patent No. 7264927 B2. Washington, DC

    Google Scholar 

  32. Jobes DV, Hurley DL, Thien LB (1995) Plant and DNA isolation: a method to efficiently remove polyphenolics, polysaccharides, and RNA. Taxon 44:379–386

    Article  Google Scholar 

  33. Loparev VN, Cartas MA, Monken CE, Velpandi A, Srinivasan A (1991) An efficient and simple method of DNA extraction from whole blood and cell lines to identify infectious agents. J Virol Methods 34:105–112

    Article  CAS  PubMed  Google Scholar 

  34. Barkallah M, Gharbi Y, Hassena AB, Silma AB, Mallek Z, Gautier M, Greub G, Gdoura R, Fendri I (2014) Survey of infectious etiologies of bovine abortion during mid- to late gestation in dairy herds. PLoS One 9:e91549. doi:10.1371/journal.pone.0091549

    Article  PubMed Central  PubMed  Google Scholar 

  35. Jeanpierre M (1987) A rapid method for the purification of DNA from blood. Nucleic Acids Res 15:9611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Balla B, Arvai K, Horvath P, Tobias B, Takacs I, Nagy Z, Dank M, Fekete G, Kosa JP, Lakatos P (2014) Fast and robust next-generation sequencing technique using ion torrent personal genome machine for the screening of neurofibromatosis type 1 (NF1) gene. J Mol Neurosci 53:204–210

    Article  CAS  PubMed  Google Scholar 

  37. Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakure M, Ohuchi H, Noji S (2002) A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem Biophys Res Commun 293:247–251

    Article  CAS  PubMed  Google Scholar 

  38. Bimboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Ruggieri B.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruggieri, J., Kemp, R., Forman, S., Van Eden, M.E. (2016). Techniques for Nucleic Acid Purification from Plant, Animal, and Microbial Samples. In: Micic, M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3185-9_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3184-2

  • Online ISBN: 978-1-4939-3185-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics