Skip to main content

Prion Extraction Methods: Comparison of Bead Beating, Ultrasonic Disruption, and Repeated Freeze-Thaw Methodologies for the Recovery of Functional Renilla-Prion Fusion Protein from Bacteria

  • Protocol
  • 3255 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Molecular DNA technology allows for production of mammalian proteins in bacteria at sufficient quantities for downstream use and analysis. Variation in design and engineering of DNA expression vectors imparts selective alterations resulting in the generation of fusion proteins with intrinsic reporters or tags used to facilitate their isolation or detection. A multitude of methods are available for the disruption of bacteria that aid in the recovery of recombinant protein. Here we compare three standard methods for the disruption of bacteria (bead beating, repeated freeze-thaw, and ultrasonic disruption) and evaluate the yield of a functional recombinant renilla-prion fusion protein from crude bacterial extracts. This report provides methods and guidance to maximize the yield of recombinant fusion proteins from bacteria for downstream applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Marston FA (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  3. Basu A, Li X, Leong SS (2011) Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 92:241–251

    Article  CAS  PubMed  Google Scholar 

  4. Burgess RR (2009) Refolding solubilized inclusion body proteins. Methods Enzymol 463:259–282

    Article  CAS  PubMed  Google Scholar 

  5. Ramon A, Senorale-Pose M, Marin M (2014) Inclusion bodies: not that bad. Front Microbiol 5:56

    Article  PubMed Central  PubMed  Google Scholar 

  6. Burbelo PD, Goldman R, Mattson TL (2005) A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins. BMC Biotechnol 5:22

    Article  PubMed Central  PubMed  Google Scholar 

  7. Saraswat M, Musante L, Ravida A, Shortt B, Byrne B, Holthofer H (2013) Preparative purification of recombinant proteins: current status and future trends. Biomed Res Int 2013:312709

    Article  PubMed Central  PubMed  Google Scholar 

  8. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Pina AS, Batalha IL, Roque AC (2014) Affinity tags in protein purification and peptide enrichment: an overview. Methods Mol Biol 1129:147–168

    Article  CAS  PubMed  Google Scholar 

  10. Pina AS, Lowe CR, Roque AC (2014) Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 32:366–381

    Article  CAS  PubMed  Google Scholar 

  11. Walls D, Loughran ST (2011) Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 681:151–175

    Article  CAS  PubMed  Google Scholar 

  12. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wood DW (2014) New trends and affinity tag designs for recombinant protein purification. Curr Opin Struct Biol 26:54–61

    Article  CAS  PubMed  Google Scholar 

  14. Karp M, Oker-Blom C (1999) A streptavidin-luciferase fusion protein: comparisons and applications. Biomol Eng 16:101–104

    Article  CAS  PubMed  Google Scholar 

  15. Kobatake E, Iwai T, Ikariyama Y, Aizawa M (1993) Bioluminescent immunoassay with a protein A-luciferase fusion protein. Anal Biochem 208:300–305

    Article  CAS  PubMed  Google Scholar 

  16. Medina-Kauwe LK, Chen X (2002) Using GFP--ligand fusions to measure receptor-mediated endocytosis in living cells. Vitam Horm 65:81–95

    Article  CAS  PubMed  Google Scholar 

  17. Southward CM, Surette MG (2002) The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol 45:1191–1196

    Article  CAS  PubMed  Google Scholar 

  18. Bell MR, Engleka MJ, Malik A, Strickler JE (2013) To fuse or not to fuse: what is your purpose? Protein Sci 22:1466–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lorenz WW, McCann RO, Longiaru M, Cormier MJ (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88:4438–4442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Roda A, Guarigli M, Michelini E, Mirasoli M, Pasini P (2003) Analytical bioluminescence and chemiluminescence. Anal Chem 75:463A–470A

    Article  PubMed  Google Scholar 

  21. Burbelo PD, Lebovitz EE, Notkins AL (2015) Luciferase immunoprecipitation systems for measuring antibodies in autoimmune and infectious diseases. Transl Res 165:325–335

    Google Scholar 

  22. Inouye S, Shimomura O (1997) The use of Renilla luciferase, Oplophorus luciferase, and apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate. Biochem Biophys Res Commun 233:349–353

    Article  CAS  PubMed  Google Scholar 

  23. Shimomura O, Musicki B, Kishi Y (1989) Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J 261:913–920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Stanker LH, Serban AV, Cleveland E, Hnasko R, Lemus A, Safar J, DeArmond SJ, Prusiner SB (2010) Conformation-dependent high-affinity monoclonal antibodies to prion proteins. J Immunol 185:729–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hnasko Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hnasko, R.M., Lin, A.V., Stanker, L.H., Bala, K., McGarvey, J.A. (2016). Prion Extraction Methods: Comparison of Bead Beating, Ultrasonic Disruption, and Repeated Freeze-Thaw Methodologies for the Recovery of Functional Renilla-Prion Fusion Protein from Bacteria. In: Micic, M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3185-9_28

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3184-2

  • Online ISBN: 978-1-4939-3185-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics