Skip to main content

Abstract

The majority of all membrane and secreted proteins, as well as numerous cytoplasmic proteins, have one or several specific branched oligosaccharide chains (glycans) attached to their backbone. Those proteins are referred to as glycoproteins and the process of oligosaccharide attachment to a protein is called glycosylation.

Glycans have numerous important structural, functional and regulatory roles including protein degradation, folding and secretion, cell signalling, immune function and transcription.

Glycoproteins are found in almost all living organisms that have been studied, including eukaryotes, eubacteria and archae. The high levels of diversity encountered in the best-studied vertebrate species indicate similar diversity in other groups of organisms. There can also be significant variation in glycosylation among members of the same species.

Glycosylation is thought to be the most complex post-translational modification because of the large number of enzymatic steps involved. Differences in monosaccharide composition, anomeric state, linkage of the subunits, branching and linkage to the peptide part of a glycoprotein are all contributing to the diversity of the glycan portion of the glycoprotein. In view of this heterogeneity the analysis of glycans is a very hard and demanding task. Therefore sample preparation is a crucial step when studying glycans.

In this chapter we discuss some of most widely used methods for separation and purification of glycans out of glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    Article  CAS  PubMed  Google Scholar 

  2. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  PubMed  Google Scholar 

  3. Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  CAS  PubMed  Google Scholar 

  4. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart G, Etzler ME (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  5. Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218:1–27

    Article  CAS  PubMed  Google Scholar 

  6. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Article  CAS  PubMed  Google Scholar 

  7. Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol Biosyst 5:1087–1104

    Article  CAS  PubMed  Google Scholar 

  8. Dennis JW, Lau KS, Demetriou M, Nabi IR (2009) Adaptive regulation at the cell surface by N-glycosylation. Traffic 10:1569–1578

    Article  CAS  PubMed  Google Scholar 

  9. Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8:874–887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rademacher TW, Parekh RB, Dwek RA (1988) Glycobiology. Annu Rev Biochem 57:785–838

    Article  CAS  PubMed  Google Scholar 

  11. Knezevic A, Bones J, Kracun SK, Gornik O, Rudd PM, Lauc G (2011) High throughput plasma N-glycome profiling using multiplexed labelling and UPLC with fluorescence detection. Analyst 136:4670–4673

    Article  CAS  PubMed  Google Scholar 

  12. Lauc G, Huffman J, Pučić M, Zgaga L, Adamczyk B, Mužinić A, Novokmet M, Polašek O, Gornik O, Krištić J, Keser T, Vitart V, Scheijen B, Uh HW, Molokhia M, Patrick AL, Mckeigue P, Koločić I, Lukić IK, Swann O, Van Leeuwen FN, Ruhaak LR, Houwing-Duistermaat J, Slagboom PE, Beekman M, De Craen AJ, Deedler AM, Zeng Q, Wang W, Hastie ND, Gyllensten U, Wilson JF, Wuhrer M, Wright A, Rudd P, Hayward C, Aulchenko Y, Campbell H, Rudan I (2012) Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9(1):e1003225

    Google Scholar 

  13. Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755

    Article  CAS  PubMed  Google Scholar 

  14. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  15. Wilson IB, Harthill JE, Mullin NP, Ashford DA, Altmann F (1998) Core alpha1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 8:651–661

    Article  CAS  PubMed  Google Scholar 

  16. Song W, Henquet MG, Mentink RA, Van Dijk AJ, Cordewener JH, Bosch D, America AH, Van Der Krol AR (2011) N-glycoproteomics in plants: perspectives and challenges. J Proteomics 74:1463–1474

    Article  CAS  PubMed  Google Scholar 

  17. Tarentino AL, Gomez CM, Plummer TH Jr (1985) Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry 24:4665–4671

    Article  CAS  PubMed  Google Scholar 

  18. Maley F, Trimble RB, Tarentino AL, Plummer TH Jr (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204

    Article  CAS  PubMed  Google Scholar 

  19. Tretter V, Altmann F, Marz L (1991) Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem 199:647–652

    Article  CAS  PubMed  Google Scholar 

  20. Freeze HH, Kranz C (2006) Endoglycosidase and glycoamidase release of N-linked oligosaccharides. Curr Protoc Protein Sci. Chapter 12, Unit 12 4

    Google Scholar 

  21. Magnelli PE, Bielik AM, Guthrie EP (2011) Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. J Vis Exp (58):e3749

    Google Scholar 

  22. Iwase H, Hotta K (1993) Release of O-linked glycoprotein glycans by endo-alpha-N-acetylgalactosaminidase. Methods Mol Biol 14:151–159

    CAS  PubMed  Google Scholar 

  23. Kozak RP, Royle L, Gardner RA, Fernandes DL, Wuhrer M (2012) Suppression of peeling during the release of O-glycans by hydrazinolysis. Anal Biochem 423:119–128

    Article  CAS  PubMed  Google Scholar 

  24. Rudd PM, Guile GR, Kuster B, Harvey DJ, Opdenakker G, Dwek RA (1997) Oligosaccharide sequencing technology. Nature 388:205–207

    Article  CAS  PubMed  Google Scholar 

  25. Gornik O, Royle L, Harvey DJ, Radcliffe CM, Saldova R, Dwek RA, Rudd P, Lauc G (2007) Changes of serum glycans during sepsis and acute pancreatitis. Glycobiology 17:1321–1332

    Article  CAS  PubMed  Google Scholar 

  26. Rudd PM, Colominas C, Royle L, Murphy N, Hart E, Merry AH, Hebestreit HF, Dwek RA (2001) A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics 1:285–294

    Article  CAS  PubMed  Google Scholar 

  27. Ruhaak LR, Huhn C, Waterreus WJ, De Boer AR, Neususs C, Hokke CH, Deelder AM, Wuhrer M (2008) Hydrophilic interaction chromatography-based high-throughput sample preparation method for N-glycan analysis from total human plasma glycoproteins. Anal Chem 80:6119–6126

    Article  CAS  PubMed  Google Scholar 

  28. Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, Kim YG, Henry GW, Shadick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12

    Article  CAS  PubMed  Google Scholar 

  29. Patel TP, Parekh RB (1994) Release of oligosaccharides from glycoproteins by hydrazinolysis. Methods Enzymol 230:57–66

    Article  CAS  PubMed  Google Scholar 

  30. Takasaki S, Kobata A (1978) Microdetermination of sugar composition by radioisotope labeling. Methods Enzymol 50:50–54

    Article  CAS  PubMed  Google Scholar 

  31. Carlson DM (1968) Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem 243:616–626

    CAS  PubMed  Google Scholar 

  32. Ogata S, Lloyd KO (1982) Mild alkaline borohydride treatment of glycoproteins-a method for liberating both N- and O-linked carbohydrate chains. Anal Biochem 119:351–359

    Article  CAS  PubMed  Google Scholar 

  33. Edge AS (2003) Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem J 376:339–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397:3457–3481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238

    Article  CAS  PubMed  Google Scholar 

  36. You J, Sheng X, Ding C, Sun Z, Suo Y, Wang H, Li Y (2008) Detection of carbohydrates using new labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone by capillary zone electrophoresis with absorbance (UV). Anal Chim Acta 609:66–75

    Article  CAS  PubMed  Google Scholar 

  37. Botelho JC, Atwood JA, Cheng L, Varez-Manilla G, York WS, Orlando R (2008) Quantification by isobaric labelling (QUIBL) for the comparative glycomics study of O-linked glycans. Int J Mass Spectrom 278:137–142

    Article  CAS  Google Scholar 

  38. Leteux C, Childs RA, Chai W, Stoll MS, Kogelberg H, Feizi T (1998) Biotinyl-l-3-(2-naphthyl)-alanine hydrazide derivatives of N-glycans: versatile solid-phase probes for carbohydrate-recognition studies. Glycobiology 8:227–236

    Article  CAS  PubMed  Google Scholar 

  39. Kerek CI, Ciucanu I (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131(2):209–217

    Google Scholar 

  40. Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 304:70–90

    Article  CAS  PubMed  Google Scholar 

  41. Nakagawa H, Hato M, Takegawa Y, Deguchi K, Ito H, Takahata M, Iwasaki N, Minami A, Nishimura S (2007) Detection of altered N-glycan profiles in whole serum from rheumatoid arthritis patients. J Chromatogr B Analyt Technol Biomed Life Sci 853:133–137

    Article  CAS  PubMed  Google Scholar 

  42. Pabst M, Kolarich D, Poltl G, Dalik T, Lubec G, Hofinger A, Altmann F (2009) Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 384:263–273

    Article  CAS  PubMed  Google Scholar 

  43. Ruhaak LR, Hennig R, Huhn C, Borowiak M, Dolhain RJ, Deelder AM, Rapp E, Wuhrer M (2010) Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J Proteome Res 9:6655–6664

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Gornik Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gornik, O., Keser, T., Lauc, G. (2016). Separation and Purification of Glycans Out of Glycoproteins. In: Micic, M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3185-9_27

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3184-2

  • Online ISBN: 978-1-4939-3185-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics