Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Nucleic acids have become intensely diversified in organisms throughout the evolution of life on our planet. These varied nucleic acids have a myriad of unique forms, all with particular physical and chemical properties that must be taken into consideration when preparing samples for laboratory work. These properties have been discovered over the course of a long and rich history of research on both DNA and RNA. This history of research has been summarized here and is accompanied with tables of the known important properties and functions of nucleic acids. Current research for the future directions of novel nucleic acid uses has also been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122(6):565–581

    Article  CAS  PubMed  Google Scholar 

  2. Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A, Ploegh H, Amon A, Scott MP (2012) Molecular cell biology, 7th edn. Freeman, W. H. & Company, New York, NY

    Google Scholar 

  3. Jones ME (1953) Albrecht kossel. A biographical sketch. Yale J Biol Med 26:80–97

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Wilkins MHF (1963) Molecular configuration of nucleic acids: from extensive diffraction data and molecular model building a more detailed picture is emerging. Science 140(3570):941–950

    Article  CAS  PubMed  Google Scholar 

  5. Avery O, MacLeod C, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Parish JH (1972) Principles and practice of experiments with nucleic acids. John Wiley & Sons, New York, NY

    Google Scholar 

  7. Breslauer KJ, Freire E, Straume M (1992) Calorimetry: a tool for DNA and ligand-DNA studies. Methods Enzymol 211:533–567

    Article  CAS  PubMed  Google Scholar 

  8. Puglisi JD, Tinoco I Jr (1989) Absorbance melting curves of RNA. Methods Enzymol 180:304–325

    Article  CAS  PubMed  Google Scholar 

  9. Šponer J, Leszczynski J, Hobza P (2001) Electronic properties, hydrogen bonding, stacking, and cation biding of DNA and RNA bases. Biopolymers 61(1):3–31

    Article  PubMed  Google Scholar 

  10. Seeman NC (2007) An overview of structural DNA nanotechnoloy. Mol Biotechnol 37:246–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Allen FW (1941) The biochemistry of the nucleic acids, purines, and pyrimidines. Annu Rev Biochem 10:221–244

    Article  CAS  Google Scholar 

  13. Darnell J (2011) RNA life’s indispensable molecule. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  14. Smith JD, Markham R (1950) Chromatographic studies on nucleic acids 2. The quantitative analysis of ribonucleic acids. Biochem J 46(5):509–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Volkin E (2001) The discovery of mRNA. Mutat Res 488:87–91

    Article  CAS  PubMed  Google Scholar 

  16. Kresge N, Simoni RD, Hill RL (2005) J Biol Chem 280(40):e37–e39

    CAS  Google Scholar 

  17. Draper DE, Gluick TC (1995) Melting studies of RNA unfolding and RNA-ligand interactions. Methods Enzymol 259:281–305

    Article  CAS  PubMed  Google Scholar 

  18. Schildkraut CL, Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCI. J Mol Biol 4:430–443

    Article  CAS  PubMed  Google Scholar 

  19. Wu P, Nakano S, Sugimoto N (2002) Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. FEBS J 269(12):2821–2830

    Article  CAS  Google Scholar 

  20. Taniguchi M, Kawai T (2006) DNA electronics. Phys E 33:1–12

    Article  CAS  Google Scholar 

  21. UC Davis BioWiki. B-Form, A-Form, Z-Form of DNA. http://biowiki.ucdavis.edu. Accessed on 22 October, 2014

  22. Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686

    Article  CAS  PubMed  Google Scholar 

  23. Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopka ML (1982) The anatomy of A-, B-, and Z-DNA. Science 216(4545):475–485

    Article  CAS  PubMed  Google Scholar 

  24. Watson JD, Crick FHC (1953) Molecular structure of deoxypentose nucleic acids. Nature 171:738–739

    Article  Google Scholar 

  25. Wang G, Vasquez KM (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424–4438

    Article  CAS  PubMed  Google Scholar 

  26. Kleene KC, Bagarova J, Hawthorne SK, Catado LM (2010) Quantitative analysis of mRNA translation in mammalian spermatogenic cells with sucrose and Nycodenz gradients. Reprod Biol Endocrinol 8:155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tennyson CN, Klamut HJ, Worton RG (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9(2):184–190

    Article  CAS  PubMed  Google Scholar 

  28. Walter P, Blobel G (1982) Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299(5885):691–698

    Article  CAS  PubMed  Google Scholar 

  29. Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62:133–151

    Article  CAS  PubMed  Google Scholar 

  30. Ray BK, Apirion D (1979) Characterization of 10S RNA: a new stable RNA molecule from Escherichia coli. Mol Gen Genet 174(1):25–32

    Article  CAS  PubMed  Google Scholar 

  31. Blum B, Bakalara N, Simpson L (1990) A model for RNA editing in kinetoplastid mitochondria: RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60(2):189–198

    Article  CAS  PubMed  Google Scholar 

  32. Evans D, Marques SM, Pace NR (2006) RNaseP: interference of the RNA and protein worlds. Trends Biochem Sci 31(6):333–341

    Article  CAS  PubMed  Google Scholar 

  33. Jarrous N, Reiner R (2007) Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 35(11):3519–3524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Piccinelli P, Rosenblad MA, Samuelsson T (2005) Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 33(14):4485–4495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jády BE, Kiss T (2001) A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J 20(3):541–551

    Article  PubMed Central  PubMed  Google Scholar 

  36. Matera GA, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220

    Article  CAS  PubMed  Google Scholar 

  37. Kiss T (2004) Biogenesis of small nuclear RNPs. J Cell Sci 117:5949–5951

    Article  CAS  PubMed  Google Scholar 

  38. Scott MS, Avolio F, Ono M, Lamond AI, Barton GJ (2009) Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol 5(9), e1000507, 1–13

    Article  PubMed Central  PubMed  Google Scholar 

  39. Jones TA, Otto W, Marz M, Eddy SR, Stadler PF (2009) A survey of nematode SmY RNAs. RNA Biol 6(1):5–8

    Article  CAS  PubMed  Google Scholar 

  40. Dassanayake RS, Chandrasekharan NV, Karunanayake EH (2001) Trans-spliced leader RNA, 5S-rRNA genes and novel variant orphan spliced-leader of the lymphatic filarial nematode Wuchereria bancrofti, and a sensitive polymerase chain reaction based detection assay. Gene 269:185–193

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Q, Kim N, Feigonn J (2011) Architecture of human telomerase RNA. Proc Natl Acad Sci U S A 108(51):20325–20332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hall AE, Turnbull C, Dalmay T (2013) Y RNAs: recent developments. Biomol Concepts 4(2):103–110

    Article  CAS  PubMed  Google Scholar 

  43. Wagner EGH, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48:713–742

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Liu XS, Liu Q, Wei L (2006) Nucleic Acids Res 34(12):3465–3475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Osato N, Suzuki Y, Ikeo K, Gojobori T (2007) Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics 176:1299–1306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hatoum-Aslan A, Samai P, Maniv I, Wenyan J, Marraffini LA (2013) A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. J Biol Chem 288:27888–27897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Perkel JM (2013) Visiting “Noncodarnia”. Biotechniques 54:301–304

    CAS  PubMed  Google Scholar 

  48. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  49. (2006) Molecular biology select Cell 126(2): 223

    Google Scholar 

  50. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert J, Bartel DP (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    Article  CAS  PubMed  Google Scholar 

  53. Diribarne G, Bensaude O (2009) 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol 6(2):122–128

    Article  CAS  PubMed  Google Scholar 

  54. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  55. Roossinck MJ, Sleat D, Paulkaitis P (1992) Satellite RNAs of plant viruses: structures and biological effects. Microbiol Mol Biol Rev 56(2):265–279

    CAS  Google Scholar 

  56. Huang C, Lo SJ (2010) Evolution and diversity of the human hepatitis D virus genome. Adv Bioinformatics 2010:1–9

    Article  Google Scholar 

  57. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ (2006) Nidovirales: evolving the largest RNA virus genome. Virus Res 117:17–37

    Article  CAS  PubMed  Google Scholar 

  58. Flores R, Delgado S, Gas M, Carbonell A, Molina D, Gago S, De la Peña M (2004) Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Lett 567:42–48

    Article  CAS  PubMed  Google Scholar 

  59. Kong LB, Siva AC, Kickhoefer VA, Rome LH, Steward PL (2000) RNA location and modeling of a WD40 repeat domain within the vault. RNA 6:890–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford, NY

    Google Scholar 

  61. Teles FRR, Fonesca LP (2008) Trends in biosensors. Talanta 77:606–623

    Article  CAS  Google Scholar 

  62. Kumar S, Kumar A (2008) Recent advances in DNA biosensor. Sensors Transd 92(5):122–133

    Google Scholar 

  63. Yange M, Yau HCM, Chan HL (1998) Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface. Langmuir 14:6121–6129

    Article  Google Scholar 

  64. Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) Base-dependent competitive adsorption of single-stranded DNA on gold. J Am Chem Soc 126:9014–9015

    Article  Google Scholar 

  65. Abe H, Abe N, Shibata A, Ito K, Tanaka Y, Ito M, Saneyoshi H, Shuto S, Ito Y (2012) Angew Chem Int Ed 51:6475–6479

    Article  CAS  Google Scholar 

  66. Arcella A, Portella G, Collepardo-Guevara R, Chakraborty D, Wales DJ, Orozco M (2014) Structure and properties of DNA in apolar solvents. J Phys Chem B 118:8540–8548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Mondal D, Sharma M, Mukesh C, Gupta V, Prasad K (2013) Improved solubility of DNA in recyclable and reusable bio-based deep eutectic solvents with long-term structural and chemical stability. Chem Commun 49:9606–9608

    Article  CAS  Google Scholar 

  68. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Real .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Real, D. (2016). Physical and Chemical Properties of Nucleic Acids. In: Micic, M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3185-9_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3184-2

  • Online ISBN: 978-1-4939-3185-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics