Skip to main content

Time-Dependent Protein Thermostability Assay

  • Protocol
P-Type ATPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

Abstract

Membrane protein purification often yields rather unstable proteins impeding functional and structural protein characterization. Low protein stability also leads to low purification yields as a result of protein degradation, aggregation, precipitation, and folding instability. It is often required to optimize buffer conditions through numerous iterations of trial and error to improve the homogeneity, stability, and solubility of the protein sample demanding high amounts of purified protein. Therefore we have set up a fast, simple, and high-throughput time-dependent thermostability-based assay at low protein cost to identify protein stabilizing factors to facilitate the handling and characterization of membrane proteins by subsequent structural and functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Moller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  PubMed  CAS  Google Scholar 

  2. Yao Q, Chen LT, Bigelow DJ (1998) Affinity purification of the Ca-ATPase from cardiac sarcoplasmic reticulum membranes. Protein Expr Purif 13:191–197

    Article  PubMed  CAS  Google Scholar 

  3. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    Article  PubMed  CAS  Google Scholar 

  4. Boivin S, Kozak S, Meijers R (2013) Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif 91:192–206

    Article  PubMed  CAS  Google Scholar 

  5. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298

    Article  PubMed  CAS  Google Scholar 

  6. Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359

    Article  PubMed  CAS  Google Scholar 

  7. Abts A, Schwarz CKW, Tschapek B, Smits SHJ, Schmitt L (2011) Rational and irrational approaches to convince a protein to crystallize. In: Kolesnikov N, Borisenko E (eds) Modern aspects of bulk crystal and thin film preparation. ISBN p. Chapter 22 497–528

    Google Scholar 

  8. Sonoda Y, Newstead S, Hu NJ, Alguel Y, Nji E, Beis K, Yashiro S, Lee C, Leung J, Cameron AD, Byrne B, Iwata S, Drew D (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19:17–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Forneris F, Orru R, Bonivento D, Chiarelli LR, Mattevi A (2009) ThermoFAD, a Thermofluor-adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J 276:2833–2840

    Article  PubMed  CAS  Google Scholar 

  10. Fan J, Heng J, Dai S, Shaw N, Zhou B, Huang B, He Z, Wang Y, Jiang T, Li X, Liu Z, Wang X, Zhang XC (2011) An efficient strategy for high throughput screening of recombinant integral membrane protein expression and stability. Protein Expr Purif 78:6–13

    Article  PubMed  CAS  Google Scholar 

  11. Ayers FC, Warner GL, Smith KL, Lawrence DA (1986) Fluorometric quantitation of cellular and nonprotein thiols. Anal Biochem 154:186–193

    Article  PubMed  CAS  Google Scholar 

  12. Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Interuniversity Poles of Attraction of the Belgian Science Policy Office (P7/13) and the Flanders Research Foundation (FWO G044212N, G0B1115N and 1514514N) and the KU Leuven (OT/13/091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vangheluwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vandecaetsbeek, I., Vangheluwe, P. (2016). Time-Dependent Protein Thermostability Assay. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics