Skip to main content

Zebrafish Whole-Mount In Situ Hybridization Followed by Sectioning

  • Protocol
P-Type ATPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

Abstract

In situ hybridization is a powerful technique used for locating specific nucleic acid targets within morphologically preserved tissues and cell preparations. A labeled RNA or DNA probe hybridizes to its complementary mRNA or DNA sequence within a sample. Here, we describe RNA in situ hybridization protocol for whole-mount zebrafish embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367

    Article  PubMed  CAS  Google Scholar 

  2. Bottger P, Doganli C, Lykke-Hartmann K (2012) Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 36(2):855–871

    Article  PubMed  CAS  Google Scholar 

  3. Cheng KC, Levenson R, Robishaw JD (2003) Functional genomic dissection of multimeric protein families in zebrafish. Dev Dyn 228(3):555–567

    Article  PubMed  CAS  Google Scholar 

  4. Barut BA, Zon LI (2000) Realizing the potential of zebrafish as a model for human disease. Physiol Genomics 2(2):49–51

    PubMed  CAS  Google Scholar 

  5. Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20(8):R371–R381

    Article  PubMed  CAS  Google Scholar 

  6. Rink E, Wullimann MF (2004) Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res 1011(2):206–220

    Article  PubMed  CAS  Google Scholar 

  7. Mukherjee A, Subhedar NK, Ghose A (2012) Ontogeny of the cocaine- and amphetamine-regulated transcript (CART) neuropeptide system in the brain of zebrafish, Danio rerio. J Comp Neurol 520(4):770–797

    Article  PubMed  CAS  Google Scholar 

  8. Dahlbom SJ, Backstrom T, Lundstedt-Enkel K, Winberg S (2012) Aggression and monoamines: effects of sex and social rank in zebrafish (Danio rerio). Behav Brain Res 228(2):333–338

    Article  PubMed  CAS  Google Scholar 

  9. Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD (2011) Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 33(6):608–617

    Article  PubMed  CAS  Google Scholar 

  10. Buske C, Gerlai R (2011) Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol 33(6):698–707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Buske C, Gerlai R (2012) Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev Psychobiol 54(1):28–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Cognato Gde P, Bortolotto JW, Blazina AR, Christoff RR, Lara DR, Vianna MR et al (2012) Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem 98(4):321–328

    Article  PubMed  Google Scholar 

  13. Vuaden FC, Savio LE, Piato AL, Pereira TC, Vianna MR, Bogo MR et al (2012) Long-term methionine exposure induces memory impairment on inhibitory avoidance task and alters acetylcholinesterase activity and expression in zebrafish (Danio rerio). Neurochem Res 37(7):1545–1553

    Article  PubMed  CAS  Google Scholar 

  14. Son OL, Kim HT, Ji MH, Yoo KW, Rhee M, Kim CH (2003) Cloning and expression analysis of a Parkinson’s disease gene, uch-L1, and its promoter in zebrafish. Biochem Biophys Res Commun 312(3):601–607

    Article  PubMed  CAS  Google Scholar 

  15. Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P (2004) Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 88(2):443–453

    Article  PubMed  CAS  Google Scholar 

  16. Flinn L, Mortiboys H, Volkmann K, Koster RW, Ingham PW, Bandmann O (2009) Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain 132(Pt 6):1613–1623

    Article  PubMed  Google Scholar 

  17. Musa A, Lehrach H, Russo VA (2001) Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Dev Genes Evol 211(11):563–567

    Article  PubMed  CAS  Google Scholar 

  18. Tomasiewicz HG, Flaherty DB, Soria JP, Wood JG (2002) Transgenic zebrafish model of neurodegeneration. J Neurosci Res 70(6):734–745

    Article  PubMed  CAS  Google Scholar 

  19. Lumsden AL, Henshall TL, Dayan S, Lardelli MT, Richards RI (2007) Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 16(16):1905–1920

    Article  PubMed  CAS  Google Scholar 

  20. Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27(18):4984–4994

    Article  PubMed  CAS  Google Scholar 

  21. Sager JJ, Bai Q, Burton EA (2010) Transgenic zebrafish models of neurodegenerative diseases. Brain Struct Funct 214(2-3):285–302

    Article  PubMed  Google Scholar 

  22. Bandmann O, Burton EA (2010) Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 40(1):58–65

    Article  PubMed  CAS  Google Scholar 

  23. Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O (2008) Zebrafish as a new animal model for movement disorders. J Neurochem 106(5):1991–1997

    Article  PubMed  CAS  Google Scholar 

  24. Xi Y, Noble S, Ekker M (2011) Modeling neurodegeneration in zebrafish. Curr Neurol Neurosci Rep 11(3):274–282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Hwang PP, Chou MY (2013) Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465(9):1233–1247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Doganli C, Oxvig C, Lykke-Hartmann K (2013) Zebrafish as a novel model to assess Na+/K(+)-ATPase-related neurological disorders. Neurosci Biobehav Rev 37(10 Pt 2):2774–2787

    Article  PubMed  CAS  Google Scholar 

  27. Seibt KJ, da Luz OR, Rosemberg DB, Savio LE, Scherer EB, Schmitz F et al (2012) MK-801 alters Na+, K+-ATPase activity and oxidative status in zebrafish brain: reversal by antipsychotic drugs. J Neural Transm 119(6):661–667

    Article  PubMed  CAS  Google Scholar 

  28. Doganli C, Kjaer-Sorensen K, Knoeckel C, Beck HC, Nyengaard JR, Honore B et al (2012) The alpha2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish. J Cell Sci 125(Pt 24):6166–6175

    Article  PubMed  CAS  Google Scholar 

  29. Shu X, Huang J, Dong Y, Choi J, Langenbacher A, Chen JN (2007) Na, K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development 134(10):1921–1930

    Article  PubMed  CAS  Google Scholar 

  30. Shu X, Cheng K, Patel N, Chen F, Joseph E, Tsai HJ et al (2003) Na, K-ATPase is essential for embryonic heart development in the zebrafish. Development 130(25):6165–6173

    Article  PubMed  CAS  Google Scholar 

  31. Doganli C, Beck HC, Ribera AB, Oxvig C, Lykke-Hartmann K (2013) alpha3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in Zebrafish. J Biol Chem 288(13):8862–8874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Schulte-Merker S, Ho RK, Herrmann BG, Nusslein-Volhard C (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116(4):1021–1032

    PubMed  CAS  Google Scholar 

  33. Thisse C, Thisse B, Schilling TF, Postlethwait JH (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119(4):1203–1215

    PubMed  CAS  Google Scholar 

  34. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3(1):59–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Lykke-Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Doganli, C., Nyengaard, J.R., Lykke-Hartmann, K. (2016). Zebrafish Whole-Mount In Situ Hybridization Followed by Sectioning. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_31

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics