Skip to main content

Measuring H+ Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems

  • Protocol
P-Type ATPases

Abstract

The activity of enzymes involved in active transport of matter across lipid bilayers can conveniently be assayed by measuring their consumption of energy, such as ATP hydrolysis, while it is more challenging to directly measure their transport activities as the transported substrate is not converted into a product and only moves a few nanometers in space. Here, we describe two methods for the measurement of active proton pumping across lipid bilayers and the concomitant formation of a membrane potential, applying the dyes 9-amino-6-chloro-2-methoxyacridine (ACMA) and oxonol VI. The methods are exemplified by assaying transport of the Arabidopsis thaliana plasma membrane H+-ATPase (proton pump), which after heterologous expression in Saccharomyces cerevisiae and subsequent purification has been reconstituted in proteoliposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meade JC, Li C, Stiles JK et al (2000) The Trypanosoma cruzi genome contains ion motive ATPase genes which closely resemble Leishmania proton pumps. Parasitol Int 49:309–320

    Article  PubMed  CAS  Google Scholar 

  2. Nakamoto RK, Slayman CW (1989) Molecular properties of the fungal plasma-membrane [H+]-ATPase. J Bioenerg Biomembr 21:621–632

    Article  PubMed  CAS  Google Scholar 

  3. Slayman CL, Long WS, Lu CY (1973) The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol 14:305–338

    Article  PubMed  CAS  Google Scholar 

  4. Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  PubMed  CAS  Google Scholar 

  5. Palmgren MG (1990) An H+-ATPase assay: proton pumping and ATPase activity determined simultaneously in the same sample. Plant Physiol 94:882–886

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Palmgren MG (1991) Acridine orange as a probe for measuring pH gradients across membranes: Mechanism and limitations. Anal Biochem 192:316–321

    Article  PubMed  CAS  Google Scholar 

  7. Clerc S, Barenholz Y (1998) A quantitative model for using acridine orange as a transmembrane pH gradient probe. Anal Biochem 259:104–111

    Article  PubMed  CAS  Google Scholar 

  8. Marty A, Bourdeaux M, Dell’Amico M et al (1986) 9-amino-2-methoxy-6-chloroacridine monocation fluorescence analysis by phase-modulation fluorometry. Eur Biophys J 13:251–257

    Article  CAS  Google Scholar 

  9. Capomacchia AC, Schulman SG (1975) Electronic absorption and fluorescence spectrophotometry of quinacrine. Anal Chim Acta 77:79–85

    Article  PubMed  CAS  Google Scholar 

  10. Casadio R (1991) Measurements of transmembrane pH differences of low extents in bacterial chromatophores. Eur Biophys J 19:189–201

    Article  CAS  Google Scholar 

  11. Grzesiek S, Otto H, Dencher NA (1989) delta pH-induced fluorescence quenching of 9-aminoacridine in lipid vesicles is due to excimer formation at the membrane. Biophys J 55:1101–1109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Apell HJ, Bersch B (1987) Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim Biophys Acta 903:480–494

    Article  PubMed  CAS  Google Scholar 

  13. Kiehl R, Hanstein WG (1984) ATP-dependent spectral response of oxonol VI in an ATP-Pi exchange complex. Biochim Biophys Acta 766:375–385

    Article  PubMed  CAS  Google Scholar 

  14. Cooper CE, Bruce D, Nicholls P (1990) Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Biochemistry 29:3859–3865

    Article  PubMed  CAS  Google Scholar 

  15. Holoubek A, Večeř J, Opekarová M et al (2003) Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H + -ATPase reconstituted into vesicles. Biochim Biophys Acta Biomembr 1609:71–79

    Article  CAS  Google Scholar 

  16. Gibrat R, Grignon C (2003) Liposomes with multiple fluorophores for measurement of ionic fluxes, selectivity, and membrane potential. Methods Enzymol 372:166–186

    Article  PubMed  CAS  Google Scholar 

  17. Ekberg K, Wielandt AG, Buch-Pedersen MJ et al (2013) A conserved asparagine in a P-type proton pump is required for efficient gating of protons. J Biol Chem 288:9610–9618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Lund A, Fuglsang AT (2012) Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping. Methods Mol Biol 913:217–223

    PubMed  CAS  Google Scholar 

  19. Venema K, Palmgren MG (1995) Metabolic modulation of transport coupling ratio in yeast plasma membrane H(+)-ATPase. J Biol Chem 270:19659–19667

    Article  PubMed  CAS  Google Scholar 

  20. Lanfermeijer FC, Venema K, Palmgren MG (1998) Purification of a histidine-tagged plant plasma membrane H+-ATPase expressed in yeast. Protein Expr Purif 12:29–37

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez A, Benito B, Cagnac O (2012) Using heterologous expression systems to characterize potassium and sodium transport activities. Methods Mol Biol 913:371–386

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the UNIK research initiative of the Danish Ministry of Science, Technology and Innovation through the “Center for Synthetic Biology” at the University of Copenhagen and the Danish National Research Foundation through the PUMPKIN Center of Excellence (DNRF85).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Højen Justesen .

Editor information

Editors and Affiliations

Additional information

This work is dedicated to the memory of Alex Green Wielandt, who set the basis of this study until his untimely death.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wielandt, A.G., Palmgren, M.G., Fuglsang, A.T., Günther-Pomorski, T., Justesen, B.H. (2016). Measuring H+ Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics