High-Throughput Fluorometric Assay for Membrane–Protein Interaction

  • Wonhwa ChoEmail author
  • Hyunjin Kim
  • Yusi Hu
Part of the Methods in Molecular Biology book series (MIMB, volume 1376)


Membrane–protein interaction plays key roles in a wide variety of biological processes. To facilitate rapid and sensitive measurement of membrane binding of soluble proteins, we developed a fluorescence-based quantitative assay that is universally applicable to all proteins. This fluorescence-quenching assay employs fluorescence protein (FP)-tagged proteins whose fluorescence intensity is greatly decreased when they bind vesicles containing synthetic lipid dark quenchers, such as N-dimethylaminoazobenzenesulfonylphosphatidylethanolamine (dabsyl-PE). This simple assay can be performed with either a spectrofluorometer or a plate reader and optimized for different proteins with various combinations of FPs and quenching lipids. The assay allows rapid, sensitive, and accurate determination of lipid specificity and affinity for various lipid binding domains and proteins, and also high-throughput screening of small molecules that modulate membrane binding of proteins.

Key words

Membrane–protein binding Lipid specificity, high-throughput fluorescence assay Membrane binding inhibitors Dark quenchers Fluorescence proteins 







Enhanced green fluorescence protein


Fluorescence protein


















Surface plasmon resonance


Yellow fluorescence protein



The work is supported by national Institutes of Health grants GM68849 and GM110128. We thank Prof. Daesung Lee for assisting in dark quencher lipid synthesis and Charles Delisle for preliminary work on high-throughput screening.


  1. 1.
    DiNitto JP, Cronin TC, Lambright DG (2003) Membrane recognition and targeting by lipid-binding domains. Sci STKE 2003:re16PubMedGoogle Scholar
  2. 2.
    Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151PubMedCrossRefGoogle Scholar
  3. 3.
    Cho W (2006) Building signaling complexes at the membrane. Sci STKE 2006:pe7PubMedGoogle Scholar
  4. 4.
    Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111PubMedCrossRefGoogle Scholar
  5. 5.
    Bhardwaj N, Stahelin RV, Langlois RE, Cho W, Lu H (2006) Structural bioinformatics prediction of membrane-binding proteins. J Mol Biol 359:486–495PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Silkov A, Yoon Y, Lee H, Gokhale N, Adu-Gyamfi E, Stahelin RV, Cho W, Murray D (2011) Genome-wide structural analysis reveals novel membrane binding properties of AP180 N-terminal homology (ANTH) domains. J Biol Chem 286:34155–34163PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zimmermann P (1761) The prevalence and significance of PDZ domain-phosphoinositide interactions. Biochim Biophys Acta 2006:947–956Google Scholar
  8. 8.
    Feng W, Zhang M (2009) Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10:87–99PubMedCrossRefGoogle Scholar
  9. 9.
    Chen Y, Sheng R, Kallberg M, Silkov A, Tun MP, Bhardwaj N, Kurilova S, Hall RA, Honig B, Lu H, Cho W (2012) Genome-wide functional annotation of dual-specificity protein- and lipid-binding modules that regulate protein interactions. Mol Cell 46:226–237PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sheng R, Chen Y, Yung Gee H, Stec E, Melowic HR, Blatner NR, Tun MP, Kim Y, Kallberg M, Fujiwara TK, Hye Hong J, Pyo Kim K, Lu H, Kusumi A, Goo Lee M, Cho W (2012) Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun 3:1249PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sheng R, Kim H, Lee H, Xin Y, Chen Y, Tian W, Cui Y, Choi JC, Doh J, Han JK, Cho W (2014) Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 5:4393PubMedPubMedCentralGoogle Scholar
  12. 12.
    Cho W, Bittova L, Stahelin RV (2001) Membrane binding assays for peripheral proteins. Anal Biochem 296:153–161PubMedCrossRefGoogle Scholar
  13. 13.
    Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39:122–133PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dowler S, Kular G, Alessi DR (2002) Protein lipid overlay assay. Sci STKE 2002:pl6PubMedGoogle Scholar
  15. 15.
    Rebecchi M, Peterson A, McLaughlin S (1992) Phosphoinositide-specific phospholipase C-delta 1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31:12742–12747PubMedCrossRefGoogle Scholar
  16. 16.
    Kraft CA, Garrido JL, Leiva-Vega L, Romero G (2009) Quantitative analysis of protein-lipid interactions using tryptophan fluorescence. Sci Signal 2:p14CrossRefGoogle Scholar
  17. 17.
    Dua R, Wu SK, Cho W (1995) A structure-function study of bovine pancreatic phospholipase A2 using polymerized mixed liposomes. J Biol Chem 270:263–268PubMedCrossRefGoogle Scholar
  18. 18.
    Bazzi MD, Nelsestuen GL (1987) Association of protein kinase C with phospholipid vesicles. Biochemistry 26:115–122PubMedCrossRefGoogle Scholar
  19. 19.
    Nalefski EA, Slazas MM, Falke JJ (1997) Ca2+-signaling cycle of a membrane-docking C2 domain. Biochemistry 36:12011–12018PubMedCrossRefGoogle Scholar
  20. 20.
    Sumandea M, Das S, Sumandea C, Cho W (1999) Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2. Biochemistry 38:16290–16297PubMedCrossRefGoogle Scholar
  21. 21.
    Yoon Y, Lee PJ, Kurilova S, Cho W (2011) In situ quantitative imaging of cellular lipids using molecular sensors. Nat Chem 3:868–874PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, Brazell T, Durugkar KA, Maki J, Ramana CV, Schaffhausen B, Wagner G, Torchilin V, Yuan J, Degterev A (2010) Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A 107:20126–20131PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rusu L, Gambhir A, McLaughlin S, Radler J (2004) Fluorescence correlation spectroscopy studies of Peptide and protein binding to phospholipid vesicles. Biophys J 87:1044–1053PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kim H, Afsari HS, Cho W (2013) High-throughput fluorescence assay for quantifying membrane-protein interaction and screening inhibitors for membrane-protein interaction. J Lipid Res 54:3531–3538PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dua R, Cho W (1994) Inhibition of human secretory class II phospholipase A2 by heparin. Eur J Biochem 221:481–490PubMedCrossRefGoogle Scholar
  26. 26.
    Lucas N, Cho W (2011) Phosphatidylserine binding is essential for plasma membrane recruitment and signaling function of 3-phosphoinositide-dependent kinase-1. J Biol Chem 286:41265–41272PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Stahelin RV, Long F, Peter BJ, Murray D, De Camilli P, McMahon HT, Cho W (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J Biol Chem 278:28993–28999PubMedCrossRefGoogle Scholar
  28. 28.
    Manna D, Albanese A, Park WS, Cho W (2007) Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J Biol Chem 282:32093–32105PubMedCrossRefGoogle Scholar
  29. 29.
    Manna D, Bhardwaj N, Vora MS, Stahelin RV, Lu H, Cho W (2008) Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCalpha C2 domain. J Biol Chem 283:26047–26058PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    White SH, Wimley WC, Ladokhin AS, Hristova K (1998) Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol 295:62–87PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations