Skip to main content

Using Surface Plasmon Resonance to Quantitatively Assess Lipid–Protein Interactions

  • Protocol
Lipid Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1376))

Abstract

Surface Plasmon Resonance (SPR) is a quantitative, label-free method for determining molecular interactions in real time. The technology involves fixing a ligand onto a senor chip, measuring a baseline resonance angle, and flowing an analyte in bulk solution over the fixed ligand to measure the subsequent change in resonance angle. The mass of analyte bound to fixed ligand is directly proportional to the resonance angle change and the system is sensitive enough to detect as little as picomolar amounts of analyte in the bulk solution. SPR can be used to determine both the specificity of molecular interactions and the kinetics and affinity of an interaction. This technique has been especially useful in measuring the affinities of lipid-binding proteins to intact liposomes of varying lipid compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39(2):122–133. doi:10.1016/j.ymeth.2006.05.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Stahelin RV (2013) Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Mol Biol Cell 24(7):883–886. doi:10.1091/mbc.E12-10-0713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Stahelin RV, Cho W (2001) Roles of calcium ions in the membrane binding of C2 domains. Biochem J 359(Pt 3):679–685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Stahelin RV, Cho W (2001) Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry 40(15):4672–4678

    Article  PubMed  CAS  Google Scholar 

  5. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. doi:10.1038/nrm2330

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moravcevic K, Oxley CL, Lemmon MA (2012) Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20(1):15–27. doi:10.1016/j.str.2011.11.012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Soni SP, Adu-Gyamfi E, Yong SS, Jee CS, Stahelin RV (2013) The Ebola virus matrix protein deeply penetrates the plasma membrane: an important step in viral egress. Biophys J 104(9):1940–1949. doi:10.1016/j.bpj.2013.03.021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bittova L, Stahelin RV, Cho W (2001) Roles of ionic residues of the C1 domain in protein kinase C-alpha activation and the origin of phosphatidylserine specificity. J Biol Chem 276(6):4218–4226. doi:10.1074/jbc.M008491200

    Article  PubMed  CAS  Google Scholar 

  9. Stahelin RV, Long F, Diraviyam K, Bruzik KS, Murray D, Cho W (2002) Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J Biol Chem 277(29):26379–26388. doi:10.1074/jbc.M201106200

    Article  PubMed  CAS  Google Scholar 

  10. Blatner NR, Stahelin RV, Diraviyam K, Hawkins PT, Hong W, Murray D, Cho W (2004) The molecular basis of the differential subcellular localization of FYVE domains. J Biol Chem 279(51):53818–53827. doi:10.1074/jbc.M408408200

    Article  PubMed  CAS  Google Scholar 

  11. Stahelin RV, Karathanassis D, Murray D, Williams RL, Cho W (2007) Structural and membrane binding analysis of the Phox homology domain of Bem1p: basis of phosphatidylinositol 4-phosphate specificity. J Biol Chem 282(35):25737–25747. doi:10.1074/jbc.M702861200

    Article  PubMed  CAS  Google Scholar 

  12. Stahelin RV, Subramanian P, Vora M, Cho W, Chalfant CE (2007) Ceramide-1-phosphate binds group IVA cytosolic phospholipase a2 via a novel site in the C2 domain. J Biol Chem 282(28):20467–20474. doi:10.1074/jbc.M701396200

    Article  PubMed  CAS  Google Scholar 

  13. Ward KE, Bhardwaj N, Vora M, Chalfant CE, Lu H, Stahelin RV (2013) The molecular basis of ceramide-1-phosphate recognition by C2 domains. J Lipid Res 54(3):636–648. doi:10.1194/jlr.M031088

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Stahelin RV, Digman MA, Medkova M, Ananthanarayanan B, Rafter JD, Melowic HR, Cho W (2004) Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cdelta. J Biol Chem 279(28):29501–29512. doi:10.1074/jbc.M403191200

    Article  PubMed  CAS  Google Scholar 

  15. Stahelin RV, Digman MA, Medkova M, Ananthanarayanan B, Melowic HR, Rafter JD, Cho W (2005) Diacylglycerol-induced membrane targeting and activation of protein kinase Cepsilon: mechanistic differences between protein kinases Cdelta and Cepsilon. J Biol Chem 280(20):19784–19793. doi:10.1074/jbc.M411285200

    Article  PubMed  CAS  Google Scholar 

  16. Erb EM, Chen X, Allen S, Roberts CJ, Tendler SJ, Davies MC, Forsen S (2000) Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal Biochem 280(1):29–35. doi:10.1006/abio.1999.4469

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The NIH (AI081077) and NSF (1122068) have supported lipid–protein interaction work in the Stahelin lab using SPR. K.D. is funded by a CBBI NIH T32 Predoctoral fellowship (NIH T32GM075762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert V. Stahelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Del Vecchio, K., Stahelin, R.V. (2016). Using Surface Plasmon Resonance to Quantitatively Assess Lipid–Protein Interactions. In: Waugh, M. (eds) Lipid Signaling Protocols. Methods in Molecular Biology, vol 1376. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3170-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3170-5_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3169-9

  • Online ISBN: 978-1-4939-3170-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics