Detection of Isolated Mitochondria-Associated ER Membranes Using the Sigma-1 Receptor

  • Abasha Lewis
  • Shang-Yi Tsai
  • Tsung-Ping SuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1376)


The interface between the endoplasmic reticulum (ER) and mitochondria referred to as the MAM (mitochondria-associated ER membrane) plays important roles in many physiological functions. A specific marker for this important entity of cellular structure is urgently needed. Thus, we propose in this method chapter that the membrane-bound ER chaperone sigma-1 receptor serves as an ideal marker for the MAM. We describe in detail the preparation and purification of the MAM by using the sigma-1 receptor as the marker and demonstrate the uniqueness of this marker by using a variety of cells, peripheral and neuronal.

Key words

Sigma-1 receptor Chaperone Endoplasmic reticulum Mitochondria MAM SDS/PAGE electrophoresis Fractionation 



This work is supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health, of the Department of Health and Human Services of the United States of America.


  1. 1.
    Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJC, Madra M, Ikenouchi J, Umeda M, Bird TD, Sturley SL, Ea S (2012) Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J 31:4106–4123PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Csordás G, Renken C, V’arnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajn’oczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cui Z, Jean E, Chen MH, Voelker DR, Vance DE (1993) Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase. A specific biochemical and cytological marker for a unique membrane fraction in rat liver. J Biol Chem 268:16655–16663PubMedGoogle Scholar
  4. 4.
    Franke WW, Kartenbeck J (1971) Outer mitochondrial membrane continuous with endoplasmic reticulum. Protoplasma 73:35–41PubMedCrossRefGoogle Scholar
  5. 5.
    Goetz JG, Genty H, St-Pierre P, Dang T, Joshi B, Sauvé R, Vogl W, Nabi IR (2007) Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. J Cell Sci 120:3553–3564PubMedCrossRefGoogle Scholar
  6. 6.
    Guardia-Laguarta C, Area-Gomez E, Rüb C, Liu Y, Jordi M, Becker D, Voos W, Ea S, Przedborski S (2014) α-Synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34:249–259PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hayashi T, Su T, Rizzuto R, Hajnoczky G (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hedskog L, Moreira C, Filadi R, Rönnbäck A, Hertwig L, Wiehager B (2013) Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci U S A 110:7916–7921PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ja L, Tata JR (1973) A rapidly sedimenting fraction of rat liver endoplasmic reticulum. J Cell Sci 13:447–459Google Scholar
  10. 10.
    Ca M, Marko M, Penczek P, Barnard D, Frank J (1994) The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc Res Tech 27:278–283CrossRefGoogle Scholar
  11. 11.
    Morré DJ, Merritt WD, Ca L (1971) Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73:43–49PubMedCrossRefGoogle Scholar
  12. 12.
    Pinton P, Giorgi C, Pandolfi PP (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 18:1450–1456PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ea S, Area-Gomez E (2013) Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 55:26–36CrossRefGoogle Scholar
  14. 14.
    Sebastián D, Hernández-Alvarez MI, Segalés J, Sorianello E, Muñoz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P, Matej O, Pich S, Burcelin R, Palacín M, Zorzano A (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 109:5523–5528PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Shore GC, Tata JR (1977) Two fractions of rough endoplasmic reticulum from rat liver. II Cytoplasmic messenger RNA’s which code for albumin and mitochondrial proteins are distributed differently between the two fractions. J Cell Biol 72:726–743PubMedCrossRefGoogle Scholar
  16. 16.
    Spijker S (2011) Dissection of rodent brain regions. In: Li KW (ed) Neuroproteomics. Humana Press, Totowa, NJ, pp 13–26CrossRefGoogle Scholar
  17. 17.
    Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin M, Ji-Cao J, Zoulim F, Bartosch B, Ovize M, Vidal H, Rieusset J (2014) Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63:3279–3294PubMedCrossRefGoogle Scholar
  18. 18.
    Wang HJ, Guay G, Pogan L, Sauvé R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150:1489–1498PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zorzano A, Liesa M, Palacín M (2009) Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol 41:1846–1854PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Cellular Pathobiology SectionIRP, DHHS, NIDA, NIHBaltimoreUSA

Personalised recommendations