Isolation and Analysis of Detergent-Resistant Membrane Fractions

  • Massimo Aureli
  • Sara Grassi
  • Sandro Sonnino
  • Alessandro PrinettiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1376)


The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through “lipid rafts,” membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.

Key words

Detergent-resistant membrane Lipid raft Liquid-ordered phase Membrane domain Microdomain Sphingolipid 


  1. 1.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  2. 2.
    Lindner R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315:2871–2878PubMedCrossRefGoogle Scholar
  3. 3.
    Jacobson K, Sheets ED, Simson R (1995) Revisiting the fluid mosaic model of membranes. Science 268:1441–1442PubMedCrossRefGoogle Scholar
  4. 4.
    Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811PubMedCrossRefGoogle Scholar
  5. 5.
    Prinetti A, Prioni S, Loberto N, Aureli M, Chigorno V, Sonnino S (2008) Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochim Biophys Acta 1780:585–596PubMedCrossRefGoogle Scholar
  6. 6.
    Sonnino S, Prinetti A (2009) Sphingolipids and membrane environments for caveolin. FEBS Lett 583:597–606PubMedCrossRefGoogle Scholar
  7. 7.
    Rajendran L, Le Lay S, Illges H (2007) Raft association and lipid droplet targeting of flotillins are independent of caveolin. Biol Chem 388:307–314PubMedCrossRefGoogle Scholar
  8. 8.
    Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746:234–251PubMedCrossRefGoogle Scholar
  9. 9.
    Lee AG, Birdsall NJ, Metcalfe JC, Toon PA, Warren GB (1974) Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry 13:3699–3705PubMedCrossRefGoogle Scholar
  10. 10.
    Wunderlich F, Ronai A, Speth V, Seelig J, Blume A (1975) Thermotropic lipid clustering in tetrahymena membranes. Biochemistry 14:3730–3735PubMedCrossRefGoogle Scholar
  11. 11.
    Wunderlich F, Ronai A (1975) Adaptive lowering of the lipid clustering temperature within Tetrahymena membranes. FEBS Lett 55:237–241PubMedCrossRefGoogle Scholar
  12. 12.
    Wunderlich F, Kreutz W, Mahler P, Ronai A, Heppeler G (1978) Thermotropic fluid goes to ordered “discontinuous” phase separation in microsomal lipids of Tetrahymena. An X-ray diffraction study. Biochemistry 17:2005–2010PubMedCrossRefGoogle Scholar
  13. 13.
    Sonnino S, Prinetti A (2012) Membrane domains and the “lipid raft” concept. Curr Med Chem 20:4–21Google Scholar
  14. 14.
    Kaiser HJ, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A 106:16645–16650PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94:1–6PubMedCrossRefGoogle Scholar
  16. 16.
    Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202PubMedCrossRefGoogle Scholar
  17. 17.
    Mouritsen OG (2010) The liquid-ordered state comes of age. Biochim Biophys Acta 1798:1286–1288PubMedCrossRefGoogle Scholar
  18. 18.
    Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172PubMedCrossRefGoogle Scholar
  19. 19.
    Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog Lipid Res 49:378–389PubMedCrossRefGoogle Scholar
  20. 20.
    Quinn PJ, Wolf C (2009) The liquid-ordered phase in membranes. Biochim Biophys Acta 1788:33–46PubMedCrossRefGoogle Scholar
  21. 21.
    van Meer G, Simons K (1988) Lipid polarity and sorting in epithelial cells. J Cell Biochem 36:51–58PubMedCrossRefGoogle Scholar
  22. 22.
    Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544PubMedCrossRefGoogle Scholar
  23. 23.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572PubMedCrossRefGoogle Scholar
  24. 24.
    Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A, Joshi B, Dennis JW, Nabi IR (2007) Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol 179:341–356PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Guirland C, Zheng JQ (2007) Membrane lipid rafts and their role in axon guidance. Adv Exp Med Biol 621:144–155PubMedCrossRefGoogle Scholar
  26. 26.
    Benarroch EE (2007) Lipid rafts, protein scaffolds, and neurologic disease. Neurology 69:1635–1639PubMedCrossRefGoogle Scholar
  27. 27.
    Hanzal-Bayer MF, Hancock JF (2007) Lipid rafts and membrane traffic. FEBS Lett 581:2098–2104PubMedCrossRefGoogle Scholar
  28. 28.
    Riethmuller J, Riehle A, Grassme H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147PubMedCrossRefGoogle Scholar
  29. 29.
    Debruin LS, Harauz G (2007) White matter rafting--membrane microdomains in myelin. Neurochem Res 32:213–228PubMedCrossRefGoogle Scholar
  30. 30.
    Delacour D, Jacob R (2006) Apical protein transport. Cell Mol Life Sci 63:2491–2505PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor DR, Hooper NM (2006) The prion protein and lipid rafts. Mol Membr Biol 23:89–99PubMedCrossRefGoogle Scholar
  32. 32.
    Manes S, Viola A (2006) Lipid rafts in lymphocyte activation and migration. Mol Membr Biol 23:59–69PubMedCrossRefGoogle Scholar
  33. 33.
    Shah A, Chen D, Boda AR, Foster LJ, Davis MJ, Hill MM (2014) RaftProt: mammalian lipid raft proteome database. Nucleic Acids Res 43:D335PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sonnino S, Prinetti A (2008) Membrane lipid domains and membrane lipid domain preparations: are they the same thing? Trends Glycosci Glycotechnol 20:315–340CrossRefGoogle Scholar
  35. 35.
    Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388PubMedCrossRefGoogle Scholar
  36. 36.
    Marchesi VT, Andrews EP (1971) Glycoproteins: isolation from cell membranes with lithium diiodosalicylate. Science 174:1247–1248PubMedCrossRefGoogle Scholar
  37. 37.
    Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79PubMedCrossRefGoogle Scholar
  38. 38.
    Carter WG, Hakomor S (1981) A new cell surface, detergent-insoluble glycoprotein matrix of human and hamster fibroblasts. The role of disulfide bonds in stabilization of the matrix. J Biol Chem 256:6953–6960PubMedGoogle Scholar
  39. 39.
    Okada Y, Mugnai G, Bremer EG, Hakomori S (1984) Glycosphingolipids in detergent-insoluble substrate attachment matrix (DISAM) prepared from substrate attachment material (SAM). Their possible role in regulating cell adhesion. Exp Cell Res 155:448–456PubMedCrossRefGoogle Scholar
  40. 40.
    Streuli CH, Patel B, Critchley DR (1981) The cholera toxin receptor ganglioside GM remains associated with triton X-100 cytoskeletons of BALB/c-3T3 cells. Exp Cell Res 136:247–254PubMedCrossRefGoogle Scholar
  41. 41.
    Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233–248PubMedCrossRefGoogle Scholar
  42. 42.
    Davies AA, Wigglesworth NM, Allan D, Owens RJ, Crumpton MJ (1984) Nonidet P-40 extraction of lymphocyte plasma membrane. Characterization of the insoluble residue. Biochem J 219:301–308PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mescher MF, Jose MJ, Balk SP (1981) Actin-containing matrix associated with the plasma membrane of murine tumour and lymphoid cells. Nature 289:139–144PubMedCrossRefGoogle Scholar
  44. 44.
    Vitetta ES, Boyse EA, Uhr JW (1973) Isolation and characterization of a molecular complex containing Thy-1 antigen from the surface of murine thymocytes and T cells. Eur J Immunol 3:446–453PubMedCrossRefGoogle Scholar
  45. 45.
    Letarte-Muirhead M, Barclay AN, Williams AF (1975) Purification of the Thy-1 molecule, a major cell-surface glycoprotein of rat thymocytes. Biochem J 151:685–697PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hoessli D, Rungger-Brandle E (1985) Association of specific cell-surface glycoproteins with a triton X-100-resistant complex of plasma membrane proteins isolated from T-lymphoma cells (P1798). Exp Cell Res 156:239–250PubMedCrossRefGoogle Scholar
  47. 47.
    Thiele HG, Koch F, Hamann A, Arndt R (1986) Biochemical characterization of the T-cell alloantigen RT-6.2. Immunology 59:195–201PubMedPubMedCentralGoogle Scholar
  48. 48.
    Hooper NM, Turner AJ (1988) Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem J 250:865–869PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sargiacomo M, Sudol M, Tang Z, Lisanti MP (1993) Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122:789–807PubMedCrossRefGoogle Scholar
  50. 50.
    Chigorno V, Palestini P, Sciannamblo M, Dolo V, Pavan A, Tettamanti G, Sonnino S (2000) Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. Eur J Biochem 267:4187–4197PubMedCrossRefGoogle Scholar
  51. 51.
    Zurzolo C, van’t Hof W, van Meer G, Rodriguez-Boulan E (1994) VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells. EMBO J 13:42–53PubMedPubMedCentralGoogle Scholar
  52. 52.
    Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Peschle C, Torrisi MR, Pavan A (1997) Evidence for the existence of ganglioside-enriched plasma membrane domains in human peripheral lymphocytes. J Lipid Res 38:969–980PubMedGoogle Scholar
  53. 53.
    Garcia-Garcia E, Grayfer L, Stafford JL, Belosevic M (2012) Evidence for the presence of functional lipid rafts in immune cells of ectothermic organisms. Dev Comp Immunol 37:257–269PubMedCrossRefGoogle Scholar
  54. 54.
    Fra AM, Williamson E, Simons K, Parton RG (1994) Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269:30745–30748PubMedGoogle Scholar
  55. 55.
    Iwabuchi K, Nagaoka I (2002) Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 100:1454–1464PubMedGoogle Scholar
  56. 56.
    Waheed AA, Shimada Y, Heijnen HF, Nakamura M, Inomata M, Hayashi M, Iwashita S, Slot JW, Ohno-Iwashita Y (2001) Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc Natl Acad Sci U S A 98:4926–4931PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Samuel BU, Mohandas N, Harrison T, McManus H, Rosse W, Reid M, Haldar K (2001) The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J Biol Chem 276:29319–29329PubMedCrossRefGoogle Scholar
  58. 58.
    Mendez AJ, Lin G, Wade DP, Lawn RM, Oram JF (2001) Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem 276:3158–3166PubMedCrossRefGoogle Scholar
  59. 59.
    Prinetti A, Chigorno V, Tettamanti G, Sonnino S (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665PubMedCrossRefGoogle Scholar
  60. 60.
    Ledesma MD, Simons K, Dotti CG (1998) Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci U S A 95:3966–3971PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y (2000) Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 275:34701–34709PubMedCrossRefGoogle Scholar
  62. 62.
    Shogomori H, Futerman AH (2001) Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft-independent mechanism. J Biol Chem 276:9182–9188PubMedCrossRefGoogle Scholar
  63. 63.
    Vey M, Pilkuhn S, Wille H, Nixon R, DeArmond SJ, Smart EJ, Anderson RG, Taraboulos A, Prusiner SB (1996) Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci U S A 93:14945–14949PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Naslavsky N, Stein R, Yanai A, Friedlander G, Taraboulos A (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem 272:6324–6331PubMedCrossRefGoogle Scholar
  65. 65.
    Prinetti A, Iwabuchi K, Hakomori S (1999) Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 274:20916–20924PubMedCrossRefGoogle Scholar
  66. 66.
    Nixon B, Mitchell LA, Anderson AL, McLaughlin EA, O’Bryan MK, Aitken RJ (2011) Proteomic and functional analysis of human sperm detergent resistant membranes. J Cell Physiol 226:2651–2665PubMedCrossRefGoogle Scholar
  67. 67.
    Chang WJ, Ying YS, Rothberg KG, Hooper NM, Turner AJ, Gambliel HA, De Gunzburg J, Mumby SM, Gilman AG, Anderson RG (1994) Purification and characterization of smooth muscle cell caveolae. J Cell Biol 126:127–138PubMedCrossRefGoogle Scholar
  68. 68.
    Celver J, Sharma M, Kovoor A (2012) D(2)-Dopamine receptors target regulator of G protein signaling 9-2 to detergent-resistant membrane fractions. J Neurochem 120:56–69PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Suzuki T, Zhang J, Miyazawa S, Liu Q, Farzan MR, Yao WD (2011) Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J Neurochem 119:64–77PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Minami SS, Hoe HS, Rebeck GW (2011) Fyn kinase regulates the association between amyloid precursor protein and Dab1 by promoting their localization to detergent-resistant membranes. J Neurochem 118:879–890PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Florey O, Durgan J, Muller W (2010) Phosphorylation of leukocyte PECAM and its association with detergent-resistant membranes regulate transendothelial migration. J Immunol 185:1878–1886PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Domingues CC, Ciana A, Buttafava A, Casadei BR, Balduini C, de Paula E, Minetti G (2010) Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes. J Membr Biol 234:195–205PubMedCrossRefGoogle Scholar
  73. 73.
    Scandroglio F, Venkata JK, Loberto N, Prioni S, Schuchman EH, Chigorno V, Prinetti A, Sonnino S (2008) Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. J Neurochem 107:329–338PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Carmona-Salazar L, El Hafidi M, Enriquez-Arredondo C, Vazquez-Vazquez C, Gonzalez de la Vara LE, Gavilanes-Ruiz M (2011) Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues. Anal Biochem 417:220–227PubMedCrossRefGoogle Scholar
  75. 75.
    Fujiwara M, Hamada S, Hiratsuka M, Fukao Y, Kawasaki T, Shimamoto K (2009) Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice. Plant Cell Physiol 50:1191–1200PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kubler E, Dohlman HG, Lisanti MP (1996) Identification of Triton X-100 insoluble membrane domains in the yeast Saccharomyces cerevisiae. Lipid requirements for targeting of heterotrimeric G-protein subunits. J Biol Chem 271:32975–32980PubMedCrossRefGoogle Scholar
  77. 77.
    Tanigawa M, Kihara A, Terashima M, Takahara T, Maeda T (2012) Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Mol Cell Biol 32:2861–2870PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhang X, Thompson GA Jr (1997) An apparent association between glycosylphosphatidylinositol-anchored proteins and a sphingolipid in Tetrahymena mimbres. Biochem J 323(Pt 1):197–206PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Parish LA, Colquhoun DR, Ubaida Mohien C, Lyashkov AE, Graham DR, Dinglasan RR (2011) Ookinete-interacting proteins on the microvillar surface are partitioned into detergent resistant membranes of Anopheles gambiae midguts. J Proteome Res 10:5150–5162PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Obando-Martinez AZ, Curtidor H, Arevalo-Pinzon G, Vanegas M, Vizcaino C, Patarroyo MA, Patarroyo ME (2010) Conserved high activity binding peptides are involved in adhesion of two detergent-resistant membrane-associated merozoite proteins to red blood cells during invasion. J Med Chem 53:3907–3918PubMedCrossRefGoogle Scholar
  81. 81.
    Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S (1998) GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem 273:9130–9138PubMedCrossRefGoogle Scholar
  82. 82.
    Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145PubMedCrossRefGoogle Scholar
  83. 83.
    Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2005) The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95:771–783PubMedCrossRefGoogle Scholar
  84. 84.
    Rivaroli A, Prioni S, Loberto N, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2007) Reorganization of prion protein membrane environment during low potassium-induced apoptosis in primary rat cerebellar neurons. J Neurochem 103:1954–1967PubMedCrossRefGoogle Scholar
  85. 85.
    Prinetti A, Aureli M, Illuzzi G, Prioni S, Nocco V, Scandroglio F, Gagliano N, Tredici G, Rodriguez-Menendez V, Chigorno V, Sonnino S (2010) GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 20:62–77PubMedCrossRefGoogle Scholar
  86. 86.
    Prinetti A, Cao T, Illuzzi G, Prioni S, Aureli M, Gagliano N, Tredici G, Rodriguez-Menendez V, Chigorno V, Sonnino S (2011) A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J Biol Chem 286:40900–40910PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Madore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R (1999) Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 18:6917–6926PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Parkin ET, Turner AJ, Hooper NM (2001) Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase. Biochem J 358:209–216PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Taylor CM, Coetzee T, Pfeiffer SE (2002) Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem 81:993–1004PubMedCrossRefGoogle Scholar
  90. 90.
    Waugh MG, Lawson D, Hsuan JJ (1999) Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochem J 337(Pt 3):591–597PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kim KB, Kim SI, Choo HJ, Kim JH, Ko YG (2004) Two-dimensional electrophoretic analysis reveals that lipid rafts are intact at physiological temperature. Proteomics 4:3527–3535PubMedCrossRefGoogle Scholar
  92. 92.
    Prinetti A, Prioni S, Chigorno V, Karagogeos D, Tettamanti G, Sonnino S (2001) Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. J Neurochem 78:1162–1167PubMedCrossRefGoogle Scholar
  93. 93.
    Arvanitis DN, Min W, Gong Y, Heng YM, Boggs JM (2005) Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin. J Neurochem 94:1696–1710PubMedCrossRefGoogle Scholar
  94. 94.
    Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953PubMedCrossRefGoogle Scholar
  95. 95.
    Chen X, Jen A, Warley A, Lawrence MJ, Quinn PJ, Morris RJ (2009) Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition. Biochem J 417:525–533PubMedCrossRefGoogle Scholar
  96. 96.
    Morris RJ, Jen A, Warley A (2011) Isolation of nano-meso scale detergent resistant membrane that has properties expected of lipid ‘rafts’. J Neurochem 116:671–677PubMedCrossRefGoogle Scholar
  97. 97.
    Parkin ET, Turner AJ, Hooper NM (1999) Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochem J 344(Pt 1):23–30PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pathak P, London E (2011) Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys J 101:2417–2425PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ingelmo-Torres M, Gaus K, Herms A, Gonzalez-Moreno E, Kassan A, Bosch M, Grewal T, Tebar F, Enrich C, Pol A (2009) Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane. Biochem J 420:373–381PubMedCrossRefGoogle Scholar
  100. 100.
    Fiedler K, Kobayashi T, Kurzchalia TV, Simons K (1993) Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:6365–6373PubMedCrossRefGoogle Scholar
  101. 101.
    Kim T, Pfeiffer SE (1999) Myelin glycosphingolipid/cholesterol-enriched microdomains selectively sequester the non-compact myelin proteins CNP and MOG. J Neurocytol 28:281–293PubMedCrossRefGoogle Scholar
  102. 102.
    Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151:143–154PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Roper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592PubMedCrossRefGoogle Scholar
  104. 104.
    Brugger B, Graham C, Leibrecht I, Mombelli E, Jen A, Wieland F, Morris R (2004) The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition. J Biol Chem 279:7530–7536PubMedCrossRefGoogle Scholar
  105. 105.
    Scandroglio F, Venkata JK, Loberto N, Prioni S, Schuchman EH, Chigorno V, Prinetti A, Sonnino S (2008) Lipid content of brain, of brain membrane lipid domains, and of neurons from acid sphingomyelinase deficient mice (asmko). J Neurochem 107:329. doi: 10.1111/j.1471-4159.2008.05591.x Google Scholar
  106. 106.
    Parkin ET, Hussain I, Karran EH, Turner AJ, Hooper NM (1999) Characterization of detergent-insoluble complexes containing the familial Alzheimer’s disease-associated presenilins. J Neurochem 72:1534–1543PubMedCrossRefGoogle Scholar
  107. 107.
    Rimmerman N, Bradshaw HB, Kozela E, Levy R, Juknat A, Vogel Z (2012) Compartmentalization of endocannabinoids into lipid rafts in a microglial cell line devoid of caveolin-1. Br J Pharmacol 165:2436–2449PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271:9690–9697PubMedCrossRefGoogle Scholar
  109. 109.
    Smart EJ, Ying YS, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci U S A 92:10104–10108PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kennedy C, Nelson MD, Bamezai AK (2011) Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts. Cell Commun Signal 9:31PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hummel I, Klappe K, Ercan C, Kok JW (2011) Multidrug resistance-related protein 1 (MRP1) function and localization depend on cortical actin. Mol Pharmacol 79:229–240PubMedCrossRefGoogle Scholar
  112. 112.
    Persaud-Sawin DA, Lightcap S, Harry GJ (2009) Isolation of rafts from mouse brain tissue by a detergent-free method. J Lipid Res 50:759–767PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rimmerman N, Hughes HV, Bradshaw HB, Pazos MX, Mackie K, Prieto AL, Walker JM (2008) Compartmentalization of endocannabinoids into lipid rafts in a dorsal root ganglion cell line. Br J Pharmacol 153:380–389PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hofman EG, Ruonala MO, Bader AN, van den Heuvel D, Voortman J, Roovers RC, Verkleij AJ, Gerritsen HC, van Bergen En Henegouwen PM (2008) EGF induces coalescence of different lipid rafts. J Cell Sci 121:2519–2528PubMedCrossRefGoogle Scholar
  115. 115.
    Liu P, Ying Y, Anderson RG (1997) Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc Natl Acad Sci U S A 94:13666–13670PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wu C, Butz S, Ying Y, Anderson RG (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem 272:3554–3559PubMedCrossRefGoogle Scholar
  117. 117.
    Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438PubMedCrossRefGoogle Scholar
  118. 118.
    Bilderback TR, Gazula VR, Lisanti MP, Dobrowsky RT (1999) Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J Biol Chem 274:257–263PubMedCrossRefGoogle Scholar
  119. 119.
    Silva WI, Maldonado HM, Lisanti MP, Devellis J, Chompre G, Mayol N, Ortiz M, Velazquez G, Maldonado A, Montalvo J (1999) Identification of caveolae and caveolin in C6 glioma cells. Int J Dev Neurosci 17:705–714PubMedCrossRefGoogle Scholar
  120. 120.
    Bravo-Zehnder M, Orio P, Norambuena A, Wallner M, Meera P, Toro L, Latorre R, Gonzalez A (2000) Apical sorting of a voltage- and Ca2+-activated K+ channel alpha -subunit in Madin-Darby canine kidney cells is independent of N-glycosylation. Proc Natl Acad Sci U S A 97:13114–13119PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Waugh MG, Lawson D, Tan SK, Hsuan JJ (1998) Phosphatidylinositol 4-phosphate synthesis in immunoisolated caveolae-like vesicles and low buoyant density non-caveolar membranes. J Biol Chem 273:17115–17121PubMedCrossRefGoogle Scholar
  122. 122.
    Eckert GP, Igbavboa U, Muller WE, Wood WG (2003) Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent reveal different lipid and protein domains. Brain Res 962:144–150PubMedCrossRefGoogle Scholar
  123. 123.
    Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P (2005) Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 92:171–182PubMedCrossRefGoogle Scholar
  124. 124.
    Mukherjee A, Arnaud L, Cooper JA (2003) Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain. J Biol Chem 278:40806–40814PubMedCrossRefGoogle Scholar
  125. 125.
    Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY, Chi SG, Yoon YS, Yoon G, Ko YG (2006) Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 6:2444–2453PubMedCrossRefGoogle Scholar
  126. 126.
    Vinson M, Rausch O, Maycox PR, Prinjha RK, Chapman D, Morrow R, Harper AJ, Dingwall C, Walsh FS, Burbidge SA, Riddell DR (2003) Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons. Mol Cell Neurosci 22:344–352PubMedCrossRefGoogle Scholar
  127. 127.
    Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia SS, Thinakaran G (2005) Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280:25892–25900PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Yu W, Zou K, Gong JS, Ko M, Yanagisawa K, Michikawa M (2005) Oligomerization of amyloid beta-protein occurs during the isolation of lipid rafts. J Neurosci Res 80:114–119PubMedCrossRefGoogle Scholar
  129. 129.
    Kasahara K, Watanabe Y, Yamamoto T, Sanai Y (1997) Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 272:29947–29953PubMedCrossRefGoogle Scholar
  130. 130.
    Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–529PubMedCrossRefGoogle Scholar
  131. 131.
    Rosslenbroich V, Dai L, Franken S, Gehrke M, Junghans U, Gieselmann V, Kappler J (2003) Subcellular localization of collapsin response mediator proteins to lipid rafts. Biochem Biophys Res Commun 305:392–399PubMedCrossRefGoogle Scholar
  132. 132.
    Maekawa S, Iino S, Miyata S (2003) Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central nervous system. Biochim Biophys Acta 1610:261–270PubMedCrossRefGoogle Scholar
  133. 133.
    Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A, Dingwall C, Dotti CG (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep 4:1190–1196PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Arvanitis DN, Yang W, Boggs JM (2002) Myelin proteolipid protein, basic protein, the small isoform of myelin-associated glycoprotein, and p42MAPK are associated in the Triton X-100 extract of central nervous system myelin. J Neurosci Res 70:8–23PubMedCrossRefGoogle Scholar
  135. 135.
    Besshoh S, Bawa D, Teves L, Wallace MC, Gurd JW (2005) Increased phosphorylation and redistribution of NMDA receptors between synaptic lipid rafts and post-synaptic densities following transient global ischemia in the rat brain. J Neurochem 93:186–194PubMedCrossRefGoogle Scholar
  136. 136.
    Gebreselassie D, Bowen WD (2004) Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes. Eur J Pharmacol 493:19–28PubMedCrossRefGoogle Scholar
  137. 137.
    Zehmer JK, Hazel JR (2003) Plasma membrane rafts of rainbow trout are subject to thermal acclimation. J Exp Biol 206:1657–1667PubMedCrossRefGoogle Scholar
  138. 138.
    Nanjundan M, Possmayer F (2001) Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms. Biochem J 358:637–646PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Palestini P, Calvi C, Conforti E, Daffara R, Botto L, Miserocchi G (2003) Compositional changes in lipid microdomains of air-blood barrier plasma membranes in pulmonary interstitial edema. J Appl Physiol 95:1446–1452PubMedCrossRefGoogle Scholar
  140. 140.
    Ramos M, Lame MW, Segall HJ, Wilson DW (2006) The BMP type II receptor is located in lipid rafts, including caveolae, of pulmonary endothelium in vivo and in vitro. Vascul Pharmacol 44:50–59PubMedCrossRefGoogle Scholar
  141. 141.
    Heffer-Lauc M, Lauc G, Nimrichter L, Fromholt SE, Schnaar RL (2005) Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation. Biochim Biophys Acta 1686(3):200–208PubMedCrossRefGoogle Scholar
  142. 142.
    Heffer-Lauc M, Viljetic B, Vajn K, Schnaar RL, Lauc G (2007) Effects of detergents on the redistribution of gangliosides and GPI-anchored proteins in brain tissue sections. J Histochem Cytochem 55:805–812PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Baron W, Decker L, Colognato H, ffrench-Constant C (2003) Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 13:151–155PubMedCrossRefGoogle Scholar
  144. 144.
    Markwell MA, Moss J, Hom BE, Fishman PH, Svennerholm L (1986) Expression of gangliosides as receptors at the cell surface controls infection of NCTC 2071 cells by Sendai virus. Virology 155:356–364PubMedCrossRefGoogle Scholar
  145. 145.
    Markwell MA, Svennerholm L, Paulson JC (1981) Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci U S A 78:5406–5410PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Masserini M, Palestini P, Venerando B, Fiorilli A, Acquotti D, Tettamanti G (1988) Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 27:7973–7978PubMedCrossRefGoogle Scholar
  147. 147.
    Yanagisawa M, Ariga T, Yu RK (2006) Cholera toxin B subunit binding does not correlate with GM1 expression: a study using mouse embryonic neural precursor cells. Glycobiology 16:19G–22GPubMedCrossRefGoogle Scholar
  148. 148.
    Prinetti A, Basso L, Appierto V, Villani MG, Valsecchi M, Loberto N, Prioni S, Chigorno V, Cavadini E, Formelli F, Sonnino S (2003) Altered sphingolipid metabolism in N-(4-hydroxyphenyl)- retinamide-resistant A2780 human ovarian carcinoma cells. J Biol Chem 278:5574–5583PubMedCrossRefGoogle Scholar
  149. 149.
    Prioni S, Loberto N, Prinetti A, Chigorno V, Guzzi F, Maggi R, Parenti M, Sonnino S (2002) Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1-7 neuronal cells. Neurochem Res 27:831–840PubMedCrossRefGoogle Scholar
  150. 150.
    Loberto N, Prioni S, Prinetti A, Ottico E, Chigorno V, Karagogeos D, Sonnino S (2003) The adhesion protein TAG-1 has a ganglioside environment in the sphingolipid-enriched membrane domains of neuronal cells in culture. J Neurochem 85:224–233PubMedCrossRefGoogle Scholar
  151. 151.
    Chigorno V, Sciannamblo M, Mikulak J, Prinetti A, Sonnino S (2006) Efflux of sphingolipids metabolically labeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid from normal cells in culture. Glycoconj J 23:159–165PubMedCrossRefGoogle Scholar
  152. 152.
    Chigorno V, Giannotta C, Ottico E, Sciannamblo M, Mikulak J, Prinetti A, Sonnino S (2005) Sphingolipid uptake by cultured cells: complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolized. J Biol Chem 280:2668–2675PubMedCrossRefGoogle Scholar
  153. 153.
    Chigorno V, Riva C, Valsecchi M, Nicolini M, Brocca P, Sonnino S (1997) Metabolic processing of gangliosides by human fibroblasts in culture--formation and recycling of separate pools of sphingosine. Eur J Biochem 250:661–669PubMedCrossRefGoogle Scholar
  154. 154.
    Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A 103:2641–2646PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Valsecchi M, Mauri L, Casellato R, Prioni S, Loberto N, Prinetti A, Chigorno V, Sonnino S (2007) Ceramide and sphingomyelin species of fibroblasts and neurons in culture. J Lipid Res 48:417–424. doi: 10.1194/jlr.M600344-JLR200 PubMedCrossRefGoogle Scholar
  156. 156.
    Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M (2000) Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404:999–1003PubMedCrossRefGoogle Scholar
  157. 157.
    Yamamura S, Handa K, Hakomori S (1997) A close association of GM3 with c-Src and Rho in GM3-enriched microdomains at the B16 melanoma cell surface membrane: a preliminary note. Biochem Biophys Res Commun 236:218–222PubMedCrossRefGoogle Scholar
  158. 158.
    Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942PubMedCrossRefGoogle Scholar
  159. 159.
    Rodgers W, Crise B, Rose JK (1994) Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 14:5384–5391PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Stan RV, Roberts WG, Predescu D, Ihida K, Saucan L, Ghitescu L, Palade GE (1997) Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol Biol Cell 8:595–605PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Oh P, Schnitzer JE (1999) Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J Biol Chem 274:23144–23154PubMedCrossRefGoogle Scholar
  162. 162.
    Iwabuchi K, Handa K, Hakomori S (1998) Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J Biol Chem 273:33766–33773PubMedCrossRefGoogle Scholar
  163. 163.
    Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A (1998) New insights in glycosphingolipid function: “glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8:xi–xixPubMedCrossRefGoogle Scholar
  164. 164.
    Iwabuchi K, Prinetti A, Sonnino S, Mauri L, Kobayashi T, Ishii K, Kaga N, Murayama K, Kurihara H, Nakayama H, Yoshizaki F, Takamori K, Ogawa H, Nagaoka I (2008) Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 25:357–374PubMedCrossRefGoogle Scholar
  165. 165.
    Miki T, Kaneda M, Iida K, Hasegawa G, Murakami M, Yamamoto N, Asou H, Kasahara K (2013) An anti-sulfatide antibody O4 immunoprecipitates sulfatide rafts including Fyn, Lyn and the G protein alpha subunit in rat primary immature oligodendrocytes. Glycoconj J 30:819–823PubMedCrossRefGoogle Scholar
  166. 166.
    Tivodar S, Paladino S, Pillich R, Prinetti A, Chigorno V, van Meer G, Sonnino S, Zurzolo C (2006) Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells. FEBS Lett 580:5705–5712PubMedCrossRefGoogle Scholar
  167. 167.
    Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32PubMedCrossRefGoogle Scholar
  168. 168.
    Eggeling C, Mueller V, Ringemann C, Sahl SJ, Leutenegger M, Schwarzmann G, Belov V, Schönle A, Hell SW (2010) Exploring membrane dynamics by fluorescence nanoscopy. Biophys J 98:619aCrossRefGoogle Scholar
  169. 169.
    Eggeling C, Ringemann C, Medda R, Hein B, Hell SW (2009) High-resolution far-field fluorescence STED microscopy reveals nanoscale details of molecular membrane dynamics. Biophys J 96:197aCrossRefGoogle Scholar
  170. 170.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162PubMedCrossRefGoogle Scholar
  171. 171.
    Iwabuchi K, Nakayama H, Masuda H, Kina K, Ogawa H, Takamori K (2012) Membrane microdomains in immunity: glycosphingolipid-enriched domain-mediated innate immune responses. Biofactors 38:275. doi: 10.1002/biof.1017 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Massimo Aureli
    • 1
  • Sara Grassi
    • 1
  • Sandro Sonnino
    • 1
  • Alessandro Prinetti
    • 1
    Email author
  1. 1.Department of Medical Biotechnology and Translational MedicineUniversity of MilanSegrateItaly

Personalised recommendations