Advertisement

Method for Assaying the Lipid Kinase Phosphatidylinositol-5-phosphate 4-kinase α in Quantitative High-Throughput Screening (qHTS) Bioluminescent Format

  • Mindy I. Davis
  • Atsuo T. Sasaki
  • Anton SimeonovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1376)

Abstract

Lipid kinases are important regulators of a variety of cellular processes and their dysregulation causes diseases such as cancer and metabolic diseases. Distinct lipid kinases regulate the seven different phosphorylated forms of phosphatidylinositol (PtdIns). Some lipid kinases utilize long-chain lipid substrates that have limited solubility in aqueous solutions, which can lead to difficulties in developing a robust and miniaturizable biochemical assay. The ability to prepare the lipid substrate and develop assays to identify modulators of lipid kinases is important and is the focus of this methods chapter. Herein, we describe a method to prepare a DMSO-based lipid mixture that enables the 1536-well screening of the lipid kinase phosphatidylinositol-5-phosphate 4-kinase α (PI5P4Kα) utilizing the d-myo-di16-PtIns(5)P substrate in quantitative high-throughput screening (qHTS) format using the ADP-Glo™ technology to couple the production of ADP to a bioluminescent readout.

Key words

Quantitative high-throughput screening (qHTS) PI5P4Kα Kinase Lipid Bioluminescence Luciferase ADP-Glo Phosphorylation 

Notes

Acknowledgement

This work was supported by the Molecular Libraries Common Fund Program of the National Institutes of Health. The content of this publication does not necessarily reflect the views of policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

References

  1. 1.
    Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176. doi: 10.1038/nrm2335 PubMedCrossRefGoogle Scholar
  2. 2.
    Rameh LE, Tolias KF, Duckworth BC, Cantley LC (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390(6656):192–196. doi: 10.1038/36621 PubMedCrossRefGoogle Scholar
  3. 3.
    Emerling BM, Hurov JB, Poulogiannis G, Tsukazawa KS, Choo-Wing R, Wulf GM, Bell EL, Shim HS, Lamia KA, Rameh LE, Bellinger G, Sasaki AT, Asara JM, Yuan X, Bullock A, Denicola GM, Song J, Brown V, Signoretti S, Cantley LC (2013) Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors. Cell 155(4):844–857. doi: 10.1016/j.cell.2013.09.057 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Jude JG, Spencer GJ, Huang X, Somerville TD, Jones DR, Divecha N, Somervaille TC (2014) A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival. Oncogene. doi: 10.1038/onc.2014.77 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tanega C, Shen M, Mott BT, Thomas CJ, MacArthur R, Inglese J, Auld DS (2009) Comparison of bioluminescent kinase assays using substrate depletion and product formation. Assay Drug Dev Technol 7(6):606–614. doi: 10.1089/adt.2009.0230 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Harbert C, Marshall J, Soh S, Steger K (2008) Development of a HTRF kinase assay for determination of Syk activity. Curr Chem Genomics 1:20–26. doi: 10.2174/1875397300801010020 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hastie CJ, McLauchlan HJ, Cohen P (2006) Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 1(2):968–971PubMedCrossRefGoogle Scholar
  8. 8.
    Kleman-Leyer KM, Klink TA, Kopp AL, Westermeyer TA, Koeff MD, Larson BR, Worzella TJ, Pinchard CA, van de Kar SA, Zaman GJ, Hornberg JJ, Lowery RG (2009) Characterization and optimization of a red-shifted fluorescence polarization ADP detection assay. Assay Drug Dev Technol 7(1):56–67. doi: 10.1089/adt.2008.175 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508. doi: 10.1146/annurev.bb.09.060180.002343 PubMedCrossRefGoogle Scholar
  10. 10.
    Demian DJ, Clugston SL, Foster MM, Rameh L, Sarkes D, Townson SA, Yang L, Zhang M, Charlton ME (2009) High-throughput, cell-free, liposome-based approach for assessing in vitro activity of lipid kinases. J Biomol Screen 14(7):838–844. doi: 10.1177/1087057109339205 PubMedCrossRefGoogle Scholar
  11. 11.
    Voss MD, Czechtizky W, Li Z, Rudolph C, Petry S, Brummerhop H, Langer T, Schiffer A, Schaefer HL (2014) Discovery and pharmacological characterization of a novel small molecule inhibitor of phosphatidylinositol-5-phosphate 4-kinase, type II, beta. Biochem Biophys Res Commun 449(3):327–331. doi: 10.1016/j.bbrc.2014.05.024 PubMedCrossRefGoogle Scholar
  12. 12.
    Vidugiriene J, Zegzouti H, Goueli SA (2009) Evaluating the utility of a bioluminescent ADP-detecting assay for lipid kinases. Assay Drug Dev Technol 7(6):585–597. doi: 10.1089/adt.2009.0223 PubMedCrossRefGoogle Scholar
  13. 13.
    Davis MI, Sasaki AT, Shen M, Emerling BM, Thorne N, Michael S, Pragani R, Boxer M, Sumita K, Takeuchi K, Auld DS, Li Z, Cantley LC, Simeonov A (2013) A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation. PLoS One 8(1):e54127. doi: 10.1371/journal.pone.0054127 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists. Methods Biochem Anal 46:1–265PubMedGoogle Scholar
  15. 15.
    Yasgar A, Shinn P, Jadhav A, Auld D, Michael S, Zheng W, Austin CP, Inglese J, Simeonov A (2008) Compound management for quantitative high-throughput screening. JALA Charlottesv Va 13(2):79–89. doi: 10.1016/j.jala.2007.12.004 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Auld DS, Southall NT, Jadhav A, Johnson RL, Diller DJ, Simeonov A, Austin CP, Inglese J (2008) Characterization of chemical libraries for luciferase inhibitory activity. J Med Chem 51(8):2372–2386. doi: 10.1021/jm701302v PubMedCrossRefGoogle Scholar
  17. 17.
    Thorne N, Shen M, Lea WA, Simeonov A, Lovell S, Auld DS, Inglese J (2012) Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chem Biol 19(8):1060–1072. doi: 10.1016/j.chembiol.2012.07.015 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mindy I. Davis
    • 1
  • Atsuo T. Sasaki
    • 2
    • 3
  • Anton Simeonov
    • 1
    Email author
  1. 1.Division of Preclinical Innovation, National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleUSA
  2. 2.Department of Internal Medicine, Division of Hematology Oncology, UC Cancer Institute, College of MedicineUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of Neurosurgery, Brain Tumor Center, UC Neuroscience Institute, College of MedicineUniversity of CincinnatiCincinnatiUSA

Personalised recommendations