Skip to main content

Hypoxia-Responsive Copolymer for siRNA Delivery

  • Protocol
RNA Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1372))

Abstract

A wide variety of nanomedicine has been designed for cancer therapy. Herein, we describe the synthesis and evaluation of a hypoxia-responsive copolymer for siRNA delivery (Perche et al., Angew Chem Int Ed Engl 53:3362–3366, 2014). The synthesis is achieved using established coupling chemistry and accessible purification procedures. A polyelectrolyte-lipid conjugate (polyethyleneimine 1.8 kDa-dioleyl-phosphatidylinositol, PEI-PE) and polyethylene glycol 2000 (PEG) were assembled via the hypoxia-sensitive azobenzene (Azo) unit to obtain the PEG-Azo-PEI-DOPE copolymer. This copolymer can condense siRNA and shows hypoxia-induced cellular internalization and reporter gene downregulation in vitro and tumor accumulation in vivo after parenteral administration (Perche et al., Angew Chem Int Ed Engl 53:3362–3366, 2014). We also detail procedures to evaluate hypoxia-targeted polymers both in monolayer cultures, cancer cell spheroids and in tumor xenografts murine models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50. doi:10.1038/nrc3180

    Article  CAS  Google Scholar 

  2. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, Gounder MM, Falzone R, Harrop J, White AC, Toudjarska I, Bumcrot D, Meyers RE, Hinkle G, Svrzikapa N, Hutabarat RM, Clausen VA, Cehelsky J, Nochur SV, Gamba-Vitalo C, Vaishnaw AK, Sah DW, Gollob JA, Burris HA 3rd (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417. doi:10.1158/2159-8290.CD-12-0429

    Article  CAS  PubMed  Google Scholar 

  3. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen HT, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39. doi:10.1126/scitranslmed.3003651

    Article  PubMed  Google Scholar 

  4. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782. doi:10.1038/nrd2614

    Article  CAS  PubMed  Google Scholar 

  5. Chow EK, Ho D (2013) Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med 5(216):216. doi:10.1126/scitranslmed.3005872

    Article  Google Scholar 

  6. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12(11):958–962. doi:10.1038/nmat3792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. doi:10.1016/j.addr.2013.11.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Caron WP, Morgan KP, Zamboni BA, Zamboni WC (2013) A review of study designs and outcomes of phase I clinical studies of nanoparticle agents compared with small-molecule anticancer agents. Clin Cancer Res 19(12):3309–3315. doi:10.1158/1078-0432.CCR-12-3649

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910. doi:10.1126/science.1226338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gill PS, Wernz J, Scadden DT, Cohen P, Mukwaya GM, von Roenn JH, Jacobs M, Kempin S, Silverberg I, Gonzales G, Rarick MU, Myers AM, Shepherd F, Sawka C, Pike MC, Ross ME (1996) Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14(8):2353–2364

    CAS  PubMed  Google Scholar 

  11. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803. doi:10.1200/JCO.2005.04.937

    Article  CAS  PubMed  Google Scholar 

  12. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7(2):243–254

    CAS  PubMed  Google Scholar 

  13. Committee AACR, Sawyers CL, Abate-Shen C, Anderson KC, Barker A, Baselga J, Berger NA, Foti M, Jemal A, Lawrence TS, Li CI, Mardis ER, Neumann PJ, Pardoll DM, Prendergast GC, Reed JC, Weiner GJ (2013) AACR cancer progress report 2013. Clin Cancer Res 19(Suppl 20):S4–S98. doi:10.1158/1078-0432.CCR-13-2107

    Google Scholar 

  14. Chan A, Orme RP, Fricker RA, Roach P (2013) Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 65(4):497–514. doi:10.1016/j.addr.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Ge Z, Liu S (2013) Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 42(17):7289–7325. doi:10.1039/c3cs60048c

    Article  CAS  PubMed  Google Scholar 

  16. Chen CY, Kim TH, Wu WC, Huang CM, Wei H, Mount CW, Tian Y, Jang SH, Pun SH, Jen AK (2013) pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials 34(18):4501–4509. doi:10.1016/j.biomaterials.2013.02.049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Li Y, Xiao K, Zhu W, Deng W, Lam KS (2014) Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev 66:58–73. doi:10.1016/j.addr.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  18. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. doi:10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, Tsien RY (2010) Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A 107(9):4317–4322. doi:10.1073/pnas.0910261107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY (2010) Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci U S A 107(9):4311–4316. doi:10.1073/pnas.0910283107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Navarro G, Essex S, Sawant RR, Biswas S, Nagesha D, Sridhar S, de ILarduya CT, Torchilin VP (2014) Phospholipid-modified polyethylenimine-based nanopreparations for siRNA-mediated gene silencing: implications for transfection and the role of lipid components. Nanomedicine 10(2):411–419. doi:10.1016/j.nano.2013.07.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Navarro G, Sawant RR, Biswas S, Essex S, Tros de Ilarduya C, Torchilin VP (2012) P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine (Lond) 7(1):65–78. doi:10.2217/nnm.11.93

    Article  CAS  Google Scholar 

  23. Navarro G, Sawant RR, Essex S, Tros de Ilarduya C, Torchilin VP (2011) Phospholipid-polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery. Drug Deliv Transl Res 1(1):25–33. doi:10.1007/s13346-010-0004-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sawant RR, Torchilin VP (2010) Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example. Methods Mol Biol 624:131–149. doi:10.1007/978-1-60761-609-2_9

    Article  CAS  PubMed  Google Scholar 

  25. Zhu L, Perche F, Wang T, Torchilin VP (2014) Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 35(13):4213–4222. doi:10.1016/j.biomaterials.2014.01.060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kiyose K, Hanaoka K, Oushiki D, Nakamura T, Kajimura M, Suematsu M, Nishimatsu H, Yamane T, Terai T, Hirata Y, Nagano T (2010) Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc 132(45):15846–15848. doi:10.1021/ja105937q

    Article  CAS  PubMed  Google Scholar 

  27. Piao W, Tsuda S, Tanaka Y, Maeda S, Liu F, Takahashi S, Kushida Y, Komatsu T, Ueno T, Terai T, Nakazawa T, Uchiyama M, Morokuma K, Nagano T, Hanaoka K (2013) Development of azo-based fluorescent probes to detect different levels of hypoxia. Angew Chem Int Ed Engl 52(49):13028–13032. doi:10.1002/anie.201305784

    Article  CAS  PubMed  Google Scholar 

  28. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S. doi:10.2967/jnumed.107.045914

    Article  CAS  PubMed  Google Scholar 

  29. Perche F, Biswas S, Wang T, Zhu L, Torchilin VP (2014) Hypoxia-Targeted siRNA Delivery. Angew Chem Int Ed Engl 53(13):3362–3366. doi:10.1002/anie.201308368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33(18):4773–4782. doi:10.1016/j.biomaterials.2012.03.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W (2014) 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 69–70:29–41. doi:10.1016/j.addr.2014.03.001

    Article  PubMed  Google Scholar 

  32. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164(2):192–204. doi:10.1016/j.jconrel.2012.04.045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Perche F, Patel NR, Torchilin VP (2012) Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG-PE micelles in ovarian cancer cell spheroid model. J Control Release 164(1):95–102. doi:10.1016/j.jconrel.2012.09.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Huang L, Liu Y (2011) In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng 13:507–530. doi:10.1146/annurev-bioeng-071910-124709

    Article  CAS  PubMed  Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  36. Waite CL, Roth CM (2009) PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjug Chem 20(10):1908–1916. doi:10.1021/bc900228m

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kieda C, El Hafny-Rahbi B, Collet G, Lamerant-Fayel N, Grillon C, Guichard A, Dulak J, Jozkowicz A, Kotlinowski J, Fylaktakidou KC, Vidal A, Auzeloux P, Miot-Noirault E, Beloeil JC, Lehn JM, Nicolau C (2013) Stable tumor vessel normalization with pO(2) increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment. J Mol Med (Berl) 91(7):883–899. doi:10.1007/s00109-013-0992-6

    Article  CAS  Google Scholar 

  38. Tupper J, Greco O, Tozer GM, Dachs GU (2004) Analysis of the horseradish peroxidase/indole-3-acetic acid combination in a three-dimensional tumor model. Cancer Gene Ther 11(7):508–513. doi:10.1038/sj.cgt.7700713

    Article  CAS  PubMed  Google Scholar 

  39. Zhu L, Wang T, Perche F, Taigind A, Torchilin VP (2013) Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci U S A 110(42):17047–17052. doi:10.1073/pnas.1304987110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11(12):1314–1321. doi:10.1038/nm1325

    Article  CAS  PubMed  Google Scholar 

  41. Perche F, Lambert O, Berchel M, Jaffres PA, Pichon C, Midoux P (2012) Gene transfer by histidylated lipopolyplexes: a dehydration method allowing preservation of their physicochemical parameters and transfection efficiency. Int J Pharm 423(1):144–150. doi:10.1016/j.ijpharm.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  42. Primon M, Huszthy PC, Motaln H, Talasila KM, Torkar A, Bjerkvig R, Lah Turnsek T (2013) Cathepsin L silencing enhances arsenic trioxide mediated in vitro cytotoxicity and apoptosis in glioblastoma U87MG spheroids. Exp Cell Res 319(17):2637–2648. doi:10.1016/j.yexcr.2013.08.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant U54CA151881 to Pr. Torchilin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Perche, F., Biswas, S., Patel, N.R., Torchilin, V.P. (2016). Hypoxia-Responsive Copolymer for siRNA Delivery. In: Medarova, Z. (eds) RNA Imaging. Methods in Molecular Biology, vol 1372. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3148-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3148-4_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3147-7

  • Online ISBN: 978-1-4939-3148-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics