Skip to main content

Studying Protein–Protein Interactions in Budding Yeast Using Co-immunoprecipitation

  • Protocol
Yeast Cytokinesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1369))

Abstract

Understanding protein–protein interactions and the architecture of protein complexes in which they work is essential to identify their biological role. Protein co-immunoprecipitation (co-IP) is an invaluable technique used in biochemistry allowing the identification of protein interactors. Here, we describe in detail an immunoaffinity purification protocol as a one-step or two-step immunoprecipitation from budding yeast Saccharomyces cerevisiae cells to subsequently detect interactions between proteins involved in the same biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  CAS  PubMed  Google Scholar 

  2. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183. doi:10.1038/415180a

    Article  CAS  PubMed  Google Scholar 

  3. Knutson BA, Luo J, Ranish J, Hahn S (2014) Architecture of the Saccharomyces cerevisiae RNA polymerase I Core Factor complex. Nat Struct Mol Biol 21(9):810–816. doi:10.1038/nsmb.2873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K (2013) Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 3(3):892–904. doi:10.1016/j.celrep.2013.02.028

    Article  CAS  PubMed  Google Scholar 

  5. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8(4):358–366

    Article  CAS  PubMed  Google Scholar 

  6. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28(19):2992–3004, doi: emboj2009226 [pii] 10.1038/emboj.2009.226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sengupta S, van Deursen F, de Piccoli G, Labib K (2013) Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr Biol 23(7):543–552. doi:10.1016/j.cub.2013.02.011

    Article  CAS  PubMed  Google Scholar 

  8. van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K (2012) Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 31(9):2195–2206. doi:10.1038/emboj.2012.69

    Article  PubMed Central  PubMed  Google Scholar 

  9. De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K (2012) Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol Cell 45(5):696–704. doi:10.1016/j.molcel.2012.01.007

    Article  PubMed  Google Scholar 

  10. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346(6208):1253596. doi:10.1126/science.1253596

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sanchez-Diaz A, Marchesi V, Murray S, Jones R, Pereira G, Edmondson R, Allen T, Labib K (2008) Inn1 couples contraction of the actomyosin ring to membrane ingression during cytokinesis in budding yeast. Nat Cell Biol 10(4):395–406. doi:10.1038/ncb1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for teaching and scientific advice to Professor Karim Labib. Methods described in this chapter were developed in Labib’s laboratory and we would like to thank members of his group past and present who contributed to our current understanding of methods presented here. We especially thank Dr. Frederick van Deursen, Dr. Sugopa Sengupta and Dr. Giacomo De Piccoli for comments on the manuscript. ASD is a recipient of a Ramon y Cajal contract and received funding from the Cantabria International Campus and via grant BFU2011-23193 from the Spanish “Ministerio de Economia y Competitividad” (co-funded by the European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Sanchez-Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Foltman, M., Sanchez-Diaz, A. (2016). Studying Protein–Protein Interactions in Budding Yeast Using Co-immunoprecipitation. In: Sanchez-Diaz, A., Perez, P. (eds) Yeast Cytokinesis. Methods in Molecular Biology, vol 1369. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3145-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3145-3_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3144-6

  • Online ISBN: 978-1-4939-3145-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics