Skip to main content

Analysis of Rho-GTPase Activity During Budding Yeast Cytokinesis

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1369))

Abstract

Rho-type small GTPases are involved in cytokinesis in various organisms, but their precise roles and regulation remain unclear. Rho proteins function as molecular switches by cycling between the active GTP-bound and inactive GDP-bound states; the GTP-bound proteins in turn interact with their downstream effectors to transmit the signal. Biochemical assays using Rho-binding domains of effector proteins have been used to specifically pull down GTP-bound Rho proteins from cell extracts. Here, we describe the application of such a method in combination with cell-cycle synchronization in the budding yeast Saccharomyces cerevisiae; this approach allows dissection of the activity of Rho1 at different stages of cytokinesis. We also present data showing the importance of caution in interpreting such biochemical data and of comparing to the results obtained with other approaches where possible. The principle of this protocol is also applicable to analyses of other Rho-type GTPases and cell-cycle events.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fededa JP, Gerlich DW (2012) Molecular control of animal cell cytokinesis. Nat Cell Biol 14(5):440–447. doi:10.1038/ncb2482

    Article  CAS  PubMed  Google Scholar 

  2. Hong Z, Delauney AJ, Verma DP (2001) A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13(4):755–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Miller AL, Bement WM (2008) Regulation of cytokinesis by Rho GTPase flux. Nat Cell Biol 11(1):71–77

    Article  PubMed Central  PubMed  Google Scholar 

  4. Piekny A, Werner M, Glotzer M (2005) Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15(12):651–658

    Article  CAS  PubMed  Google Scholar 

  5. Tolliday N, VerPlank L, Li R (2002) Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr Biol 12(21):1864–1870

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida S, Kono K, Lowery DM, Bartolini S, Yaffe MB, Ohya Y, Pellman D (2006) Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science 313(5783):108–111

    Article  CAS  PubMed  Google Scholar 

  7. Matsumura F (2005) Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol 15(7):371–377

    Article  CAS  PubMed  Google Scholar 

  8. Gai M, Camera P, Dema A, Bianchi F, Berto G, Scarpa E, Germena G, Di Cunto F (2011) Citron kinase controls abscission through RhoA and anillin. Mol Biol Cell 22(20):3768–3778. doi:10.1091/mbc.E10-12-0952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23(6):1024–1034. doi:10.1091/mbc.E11-08-0721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yoshida S, Bartolini S, Pellman D (2009) Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev 23(7):810–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Onishi M, Ko N, Nishihama R, Pringle JR (2013) Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis. J Cell Biol 202(2):311–329. doi:10.1083/jcb.201302001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. O'Connell CB, Wheatley SP, Ahmed S, Wang YL (1999) The small GTP-binding protein rho regulates cortical activities in cultured cells during division. J Cell Biol 144(2):305–313

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chalamalasetty RB, Hummer S, Nigg EA, Sillje HH (2006) Influence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission. J Cell Sci 119(Pt 14):3008–3019. doi:10.1242/jcs.03032

    Article  CAS  PubMed  Google Scholar 

  14. Ozaki K, Tanaka K, Imamura H, Hihara T, Kameyama T, Nonaka H, Hirano H, Matsuura Y, Takai Y (1996) Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15(9):2196–2207

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Schmelzle T, Helliwell SB, Hall MN (2002) Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol 22(5):1329–1339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Schmidt M, Bowers B, Varma A, Roh DH, Cabib E (2002) In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci 115(Pt 2):293–302

    CAS  PubMed  Google Scholar 

  17. Masuda T, Tanaka K, Nonaka H, Yamochi W, Maeda A, Takai Y (1994) Molecular cloning and characterization of yeast rho GDP dissociation inhibitor. J Biol Chem 269(31):19713–19718

    CAS  PubMed  Google Scholar 

  18. Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272(5259):279–281

    Article  CAS  PubMed  Google Scholar 

  19. Guo W, Tamanoi F, Novick P (2001) Spatial regulation of the exocyst complex by Rho1 GTPase. Nat Cell Biol 3(4):353–360

    Article  CAS  PubMed  Google Scholar 

  20. Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, Umikawa M, Mino A, Takai Y (1995) A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J 14(23):5931–5938

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Drgonova J, Drgon T, Tanaka K, Kollar R, Chen GC, Ford RA, Chan CS, Takai Y, Cabib E (1996) Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272(5259):277–279

    Article  CAS  PubMed  Google Scholar 

  22. Kamada Y, Qadota H, Python CP, Anraku Y, Ohya Y, Levin DE (1996) Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem 271(16):9193–9196

    Article  CAS  PubMed  Google Scholar 

  23. Kohno H, Tanaka K, Mino A, Umikawa M, Imamura H, Fujiwara T, Fujita Y, Hotta K, Qadota H, Watanabe T, Ohya Y, Takai Y (1996) Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 15(22):6060–6068

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18(3):578–585. doi:10.1093/emboj/18.3.578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kimura K, Tsuji T, Takada Y, Miki T, Narumiya S (2000) Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J Biol Chem 275(23):17233–17236. doi:10.1074/jbc.C000212200

    Article  CAS  PubMed  Google Scholar 

  26. Kono K, Nogami S, Abe M, Nishizawa M, Morishita S, Pellman D, Ohya Y (2008) G1/S cyclin-dependent kinase regulates small GTPase Rho1p through phosphorylation of RhoGEF Tus1p in Saccharomyces cerevisiae. Mol Biol Cell 19(4):1763–1771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Logan MR, Jones L, Eitzen G (2010) Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion. Biochem Biophys Res Commun 394(1):64–69. doi:10.1016/j.bbrc.2010.02.102

    Article  CAS  PubMed  Google Scholar 

  28. Kono K, Saeki Y, Yoshida S, Tanaka K, Pellman D (2012) Proteasomal degradation resolves competition between cell polarization and cellular wound healing. Cell 150(1):151–164. doi:10.1016/j.cell.2012.05.030

    Article  CAS  PubMed  Google Scholar 

  29. Weiss EL (2012) Mitotic exit and separation of mother and daughter cells. Genetics 192(4):1165–1202. doi:10.1534/genetics.112.145516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wloka C, Bi E (2012) Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken). doi:10.1002/cm.21046

    Google Scholar 

  31. Atkins BD, Yoshida S, Saito K, Wu CF, Lew DJ, Pellman D (2013) Inhibition of Cdc42 during mitotic exit is required for cytokinesis. J Cell Biol 202(2):231–240. doi:10.1083/jcb.201301090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Balasubramanian MK, Tao EY (2013) Timing it right: precise ON/OFF switches for Rho1 and Cdc42 GTPases in cytokinesis. J Cell Biol 202(2):187–189. doi:10.1083/jcb.201306152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Denis V, Cyert MS (2005) Molecular analysis reveals localization of Saccharomyces cerevisiae protein kinase C to sites of polarized growth and Pkc1p targeting to the nucleus and mitotic spindle. Eukaryot Cell 4(1):36–45. doi:10.1128/ec.4.1.36-45.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Drgonova J, Drgon T, Roh DH, Cabib E (1999) The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J Cell Biol 146(2):373–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210(1):179–187

    Article  CAS  PubMed  Google Scholar 

  36. Futcher B (1999) Cell cycle synchronization. Methods Cell Sci 21(2-3):79–86

    Article  CAS  PubMed  Google Scholar 

  37. Bi E, Pringle JR (1996) ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae. Mol Cell Biol 16(10):5264–5275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Keiko Kono and Satoshi Yoshida for their helpful advice in developing this protocol. This work was supported in part by grants to JRP from the National Institutes of Health (GM31006) and RJEG Foundation and a postdoctoral fellowship to MO from the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Onishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Onishi, M., Pringle, J.R. (2016). Analysis of Rho-GTPase Activity During Budding Yeast Cytokinesis. In: Sanchez-Diaz, A., Perez, P. (eds) Yeast Cytokinesis. Methods in Molecular Biology, vol 1369. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3145-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3145-3_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3144-6

  • Online ISBN: 978-1-4939-3145-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics