Skip to main content

New Molecular and Cellular Mechanisms of Tolerance: Tolerogenic Actions of IL-2

  • Protocol
Suppression and Regulation of Immune Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1371))

Abstract

Interleukin-2 (IL-2) is an old molecule with brand new functions. Indeed, IL-2 has been first described as a T-cell growth factor but recent data pointed out that its main function in vivo is the maintenance of immune tolerance. Mechanistically, IL-2 is essential for the development and function of CD4+ Foxp3+ regulatory T cells (Treg cells) that are essential players in the control of immune responded to self, tumors, microbes and grafts. Treg cells are exquisitely sensitive to IL-2 due to their constitutive expression of the high affinity IL-2 receptor (IL-2R) and the new paradigm suggests that low-doses of IL-2 could selectively boost Treg cells in vivo. Consequently, a growing body of clinical research is aiming at using IL-2 at low doses as a tolerogenic drug to boost endogenous Treg cells in patients suffering from autoimmune or inflammatory conditions. In this manuscript, we briefly review IL-2/IL-2R biology and the role of IL-2 in the development, maintenance, and function of Treg cells; and also its effects on other immune cell populations such as CD4+ T helper cells and CD8+ memory T cells. Then, focusing on type 1 diabetes, we review the preclinical studies and clinical trials supporting the use of low-doses IL-2 as a tolerogenic immunotherapy. Finally, we discuss the limitations and future directions for IL-2 based immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007–1008

    Article  CAS  PubMed  Google Scholar 

  2. Gillis S, Smith KA (1977) Long term culture of tumour-specific cytotoxic T cells. Nature 268:154–156

    Article  CAS  PubMed  Google Scholar 

  3. Smith KA, Gilbride KJ, Favata MF (1980) Lymphocyte activating factor promotes T-cell growth factor production by cloned murine lymphoma cells. Nature 287:853–855

    Article  CAS  PubMed  Google Scholar 

  4. Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J (1983) Structure and expression of a cloned cDNA for human interleukin-2. Nature 302:305–310

    Article  CAS  PubMed  Google Scholar 

  5. Bazan JF (1992) Unraveling the structure of IL-2. Science 257:410–413

    Article  CAS  PubMed  Google Scholar 

  6. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167:3114–3122

    Article  CAS  PubMed  Google Scholar 

  7. Yui MA, Sharp LL, Havran WL, Rothenberg EV (2004) Preferential activation of an IL-2 regulatory sequence transgene in TCR gamma delta and NKT cells: subset-specific differences in IL-2 regulation. J Immunol 172:4691–4699

    Article  CAS  PubMed  Google Scholar 

  8. Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E, Rescigno M, Moro G, Ricciardi-Castagnoli P (2001) Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2:882–888

    Article  CAS  PubMed  Google Scholar 

  9. Hershko AY, Suzuki R, Charles N, Alvarez-Errico D, Sargent JL, Laurence A, Rivera J (2011) Mast cell interleukin-2 production contributes to suppression of chronic allergic dermatitis. Immunity 35:562–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Jain J, Loh C, Rao A (1995) Transcriptional regulation of the IL-2 gene. Curr Opin Immunol 7:333–342

    Article  CAS  PubMed  Google Scholar 

  11. Lindstein T, June CH, Ledbetter JA, Stella G, Thompson CB (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244:339–343

    Article  CAS  PubMed  Google Scholar 

  12. Gong D, Malek TR (2007) Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J Immunol 178:242–252

    Article  CAS  PubMed  Google Scholar 

  13. Villarino AV, Tato CM, Stumhofer JS, Yao Z, Cui YK, Hennighausen L, O’Shea JJ, Hunter CA (2007) Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals. J Exp Med 204:65–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kallies A, Hawkins ED, Belz GT, Metcalf D, Hommel M, Corcoran LM, Hodgkin PD, Nutt SL (2006) Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 7:466–474

    Article  CAS  PubMed  Google Scholar 

  15. Martins GA, Cimmino L, Shapiro-Shelef M, Szabolcs M, Herron A, Magnusdottir E, Calame K (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7:457–465

    Article  CAS  PubMed  Google Scholar 

  16. Donohue JH, Rosenberg SA (1983) The fate of interleukin-2 after in vivo administration. J Immunol 130:2203–2208

    CAS  PubMed  Google Scholar 

  17. Miller JD, Clabaugh SE, Smith DR, Stevens RB, Wrenshall LE (2012) Interleukin-2 is present in human blood vessels and released in biologically active form by heparanase. Immunol Cell Biol 90:159–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Miller JD, Stevens ET, Smith DR, Wight TN, Wrenshall LE (2008) Perlecan: a major IL-2-binding proteoglycan in murine spleen. Immunol Cell Biol 86:192–199

    Article  CAS  PubMed  Google Scholar 

  19. Wrenshall LE, Platt JL (1999) Regulation of T cell homeostasis by heparan sulfate-bound IL-2. J Immunol 163:3793–3800

    CAS  PubMed  Google Scholar 

  20. Kondo S, Kinoshita M, Shimizu A, Saito Y, Konishi M, Sabe H, Honjo T (1987) Expression and functional characterization of artificial mutants of interleukin-2 receptor. Nature 327:64–67

    Article  CAS  PubMed  Google Scholar 

  21. Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC (2005) The structure of interleukin-2 complexed with its alpha receptor. Science 308:1477–1480

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Rickert M, Garcia KC (2005) Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310:1159–1163

    Article  CAS  PubMed  Google Scholar 

  23. Wuest SC, Edwan JH, Martin JF, Han S, Perry JS, Cartagena CM, Matsuura E, Maric D, Waldmann TA, Bielekova B (2011) A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 17:604–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479

    Article  CAS  PubMed  Google Scholar 

  25. Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R (2010) Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32:91–103

    Article  CAS  PubMed  Google Scholar 

  26. Bachmann MF, Wolint P, Walton S, Schwarz K, Oxenius A (2007) Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. Eur J Immunol 37:1502–1512

    Article  CAS  PubMed  Google Scholar 

  27. Williams MA, Tyznik AJ, Bevan MJ (2006) Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:890–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32:79–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yu A, Zhou J, Marten N, Bergmann CC, Mammolenti M, Levy RB, Malek TR (2003) Efficient induction of primary and secondary T cell-dependent immune responses in vivo in the absence of functional IL-2 and IL-15 receptors. J Immunol 170:236–242

    Article  CAS  PubMed  Google Scholar 

  30. Mitchell DM, Williams MA (2013) Disparate roles for STAT5 in primary and secondary CTL responses. J Immunol 190:3390–3398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Becker TC, Wherry EJ, Boone D, Murali-Krishna K, Antia R, Ma A, Ahmed R (2002) Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 195:1541–1548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhang X, Sun S, Hwang I, Tough DF, Sprent J (1998) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591–599

    Article  CAS  PubMed  Google Scholar 

  33. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676

    Article  CAS  PubMed  Google Scholar 

  34. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR et al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Horak I (1993) Immune responses in interleukin-2-deficient mice. Science 262:1059–1061

    Article  CAS  PubMed  Google Scholar 

  36. Gasteiger G, Hemmers S, Bos PD, Sun JC, Rudensky AY (2013) IL-2-dependent adaptive control of NK cell homeostasis. J Exp Med 210:1179–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Caligiuri MA, Murray C, Robertson MJ, Wang E, Cochran K, Cameron C, Schow P, Ross ME, Klumpp TR, Soiffer RJ et al (1993) Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest 91:123–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, McFarland H, Henkart PA, Martin R (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 103:5941–5946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lantz O, Grillot-Courvalin C, Schmitt C, Fermand JP, Brouet JC (1985) Interleukin 2-induced proliferation of leukemic human B cells. J Exp Med 161:1225–1230

    Article  CAS  PubMed  Google Scholar 

  40. Mingari MC, Gerosa F, Carra G, Accolla RS, Moretta A, Zubler RH, Waldmann TA, Moretta L (1984) Human interleukin-2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells. Nature 312:641–643

    Article  CAS  PubMed  Google Scholar 

  41. Baeyens A, Perol L, Fourcade G, Cagnard N, Carpentier W, Woytschak J, Boyman O, Hartemann A, Piaggio E (2013) Limitations of IL-2 and rapamycin in immunotherapy of type 1 diabetes. Diabetes 62:3120–3131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Contractor NV, Bassiri H, Reya T, Park AY, Baumgart DC, Wasik MA, Emerson SG, Carding SR (1998) Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol 160:385–394

    CAS  PubMed  Google Scholar 

  43. Kawai K, Suzuki H, Tomiyama K, Minagawa M, Mak TW, Ohashi PS (1998) Requirement of the IL-2 receptor beta chain for the development of Vgamma3 dendritic epidermal T cells. J Invest Dermatol 110:961–965

    Article  CAS  PubMed  Google Scholar 

  44. Porter BO, Malek TR (1999) IL-2Rbeta/IL-7Ralpha doubly deficient mice recapitulate the thymic and intraepithelial lymphocyte (IEL) developmental defects of gammac−/− mice: roles for both IL-2 and IL-15 in CD8alphaalpha IEL development. J Immunol 163:5906–5912

    CAS  PubMed  Google Scholar 

  45. Ye SK, Maki K, Lee HC, Ito A, Kawai K, Suzuki H, Mak TW, Chien Y, Honjo T, Ikuta K (2001) Differential roles of cytokine receptors in the development of epidermal gamma delta T cells. J Immunol 167:1929–1934

    Article  CAS  PubMed  Google Scholar 

  46. Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, Mitchell AJ, Tay SS, Jain R, Forbes-Blom E et al (2013) Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 14:564–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE et al (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149

    Article  CAS  PubMed  Google Scholar 

  48. Herr F, Lemoine R, Gouilleux F, Meley D, Kazma I, Heraud A, Velge-Roussel F, Baron C, Lebranchu Y (2014) IL-2 phosphorylates STAT5 to drive IFN-gamma production and activation of human dendritic cells. J Immunol 192:5660–5670

    Article  CAS  PubMed  Google Scholar 

  49. Plaisance S, Rubinstein E, Alileche A, Benoit P, Jasmin C, Azzarone B (1993) The IL-2 receptor present on human embryonic fibroblasts is functional in the absence of P64/IL-2R gamma chain. Int Immunol 5:843–848

    Article  CAS  PubMed  Google Scholar 

  50. Petitto JM, Meola D, Huang Z (2012) Interleukin-2 and the brain: dissecting central versus peripheral contributions using unique mouse models. Methods Mol Biol 934:301–311

    Article  PubMed  Google Scholar 

  51. Dirice E, Kahraman S, Jiang W, El Ouaamari A, De Jesus DF, Teo AK, Hu J, Kawamori D, Gaglia JL, Mathis D et al (2014) Soluble factors secreted by T cells promote beta-cell proliferation. Diabetes 63:188–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Krieg C, Letourneau S, Pantaleo G, Boyman O (2010) Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A 107:11906–11911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352:621–624

    Article  CAS  PubMed  Google Scholar 

  54. Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202:1375–1386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Shi M, Lin TH, Appell KC, Berg LJ (2008) Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 28:763–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Liao W, Lin JX, Wang L, Li P, Leonard WJ (2011) Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 12:551–559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, Zhu J, Paul WE (2004) Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A 101:3880–3885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Liao W, Schones DE, Oh J, Cui Y, Cui K, Roh TY, Zhao K, Leonard WJ (2008) Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol 9:1288–1296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381

    Article  CAS  PubMed  Google Scholar 

  60. Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S (2012) STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med 209:243–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ballesteros-Tato A, Leon B, Graf BA, Moquin A, Adams PS, Lund FE, Randall TD (2012) Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36:847–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Oestreich KJ, Mohn SE, Weinmann AS (2012) Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat Immunol 13:405–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kovacs JA, Baseler M, Dewar RJ, Vogel S, Davey RT Jr, Falloon J, Polis MA, Walker RE, Stevens R, Salzman NP et al (1995) Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med 332:567–575

    Article  CAS  PubMed  Google Scholar 

  66. Kovacs JA, Vogel S, Albert JM, Falloon J, Davey RT Jr, Walker RE, Polis MA, Spooner K, Metcalf JA, Baseler M et al (1996) Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 335:1350–1356

    Article  CAS  PubMed  Google Scholar 

  67. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    CAS  PubMed  Google Scholar 

  68. Klapper JA, Downey SG, Smith FO, Yang JC, Hughes MS, Kammula US, Sherry RM, Royal RE, Steinberg SM, Rosenberg S (2008) High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113:293–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. INSIGHT-ESPRIT Study Group; SILCAAT Scientific Committee, Abrams D, Levy Y, Losso MH, Babiker A, Collins G, Cooper DA, Darbyshire J, Emery S et al (2009) Interleukin-2 therapy in patients with HIV infection. N Engl J Med 361:1548–1559

    Article  Google Scholar 

  70. Rosenberg SA (2012) Raising the bar: the curative potential of human cancer immunotherapy. Sci Transl Med 4:127ps128

    Article  CAS  Google Scholar 

  71. Weiss L, Letimier FA, Carriere M, Maiella S, Donkova-Petrini V, Targat B, Benecke A, Rogge L, Levy Y (2010) In vivo expansion of naive and activated CD4+CD25+FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients. Proc Natl Acad Sci U S A 107:10632–10637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–2414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Lemoine FM, Cherai M, Giverne C, Dimitri D, Rosenzwajg M, Trebeden-Negre H, Chaput N, Barrou B, Thioun N, Gattegnio B et al (2009) Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. Int J Oncol 35:569–581

    Article  CAS  PubMed  Google Scholar 

  74. Sim GC, Martin-Orozco N, Jin L, Yang Y, Wu S, Washington E, Sanders D, Lacey C, Wang Y, Vence L et al (2014) IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J Clin Invest 124(1):99–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H et al (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268:1472–1476

    Article  CAS  PubMed  Google Scholar 

  77. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3:521–530

    Article  CAS  PubMed  Google Scholar 

  78. Kramer S, Schimpl A, Hunig T (1995) Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med 182:1769–1776

    Article  CAS  PubMed  Google Scholar 

  79. Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I (1999) Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 190:1561–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Wolf M, Schimpl A, Hunig T (2001) Control of T cell hyperactivation in IL-2-deficient mice by CD4(+)CD25(−) and CD4(+)CD25(+) T cells: evidence for two distinct regulatory mechanisms. Eur J Immunol 31:1637–1645

    Article  CAS  PubMed  Google Scholar 

  81. Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167–178

    Article  CAS  PubMed  Google Scholar 

  82. Almeida AR, Legrand N, Papiernik M, Freitas AA (2002) Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol 169:4850–4860

    Article  PubMed  Google Scholar 

  83. D’Cruz LM, Klein L (2005) Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159

    Article  PubMed  CAS  Google Scholar 

  84. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    Article  CAS  PubMed  Google Scholar 

  85. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290

    Article  CAS  PubMed  Google Scholar 

  86. Soper DM, Kasprowicz DJ, Ziegler SF (2007) IL-2Rbeta links IL-2R signaling with Foxp3 expression. Eur J Immunol 37:1817–1826

    Article  CAS  PubMed  Google Scholar 

  87. Bayer AL, Yu A, Malek TR (2007) Function of the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells. J Immunol 178:4062–4071

    Article  CAS  PubMed  Google Scholar 

  88. Malek TR, Porter BO, Codias EK, Scibelli P, Yu A (2000) Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 164:2905–2914

    Article  CAS  PubMed  Google Scholar 

  89. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R et al (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, Bellucci R, Raderschall E, Canning C, Soiffer RJ et al (2006) IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108:1571–1579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U, Duber S, Geffers R, Giehr P et al (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol 190:3180–3188

    Article  CAS  PubMed  Google Scholar 

  93. Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA (2008) IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol 181:3285–3290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201:723–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Bayer AL, Yu A, Adeegbe D, Malek TR (2005) Essential role for interleukin-2 for CD4(+)CD25(+) T regulatory cell development during the neonatal period. J Exp Med 201:769–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Murawski MR, Litherland SA, Clare-Salzler MJ, Davoodi-Semiromi A (2006) Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann N Y Acad Sci 1079:198–204

    Article  CAS  PubMed  Google Scholar 

  98. Passerini L, Allan SE, Battaglia M, Di Nunzio S, Alstad AN, Levings MK, Roncarolo MG, Bacchetta R (2008) STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25− effector T cells. Int Immunol 20:421–431

    Article  CAS  PubMed  Google Scholar 

  99. Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, Benoist C, Rudensky AY (2010) Stability of the regulatory T cell lineage in vivo. Science 329:1667–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387

    Article  CAS  PubMed  Google Scholar 

  101. Almeida AR, Zaragoza B, Freitas AA (2006) Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. J Immunol 177:192–200

    Article  CAS  PubMed  Google Scholar 

  102. Amado IF, Berges J, Luther RJ, Mailhe MP, Garcia S, Bandeira A, Weaver C, Liston A, Freitas AA (2013) IL-2 coordinates IL-2-producing and regulatory T cell interplay. J Exp Med 210:2707–2720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B, Jones R, Ring SM, McArdle W, Pembrey ME et al (2005) Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 76:773–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R et al (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Concannon P, Chen WM, Julier C, Morahan G, Akolkar B, Erlich HA, Hilner JE, Nerup J, Nierras C, Pociot F et al (2009) Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes 58:1018–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  CAS  Google Scholar 

  108. Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, Piccirillo CA, Salomon BL, Bluestone JA (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Pierson W, Cauwe B, Policheni A, Schlenner SM, Franckaert D, Berges J, Humblet-Baron S, Schonefeldt S, Herold MJ, Hildeman D et al (2013) Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3(+) regulatory T cells. Nat Immunol 14:959–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Josefowicz SZ, Rudensky A (2009) Control of regulatory T cell lineage commitment and maintenance. Immunity 30:616–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Smigiel KS, Richards E, Srivastava S, Thomas KR, Dudda JC, Klonowski KD, Campbell DJ (2014) CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J Exp Med 211:121–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  CAS  PubMed  Google Scholar 

  113. Goldstein JD, Perol L, Zaragoza B, Baeyens A, Marodon G, Piaggio E (2013) Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function. Front Immunol 4:155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Davidson TS, DiPaolo RJ, Andersson J, Shevach EM (2007) Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178:4022–4026

    Article  CAS  PubMed  Google Scholar 

  116. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25− cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018–2027

    Article  CAS  PubMed  Google Scholar 

  117. Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J (2009) Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 39:948–955

    Article  CAS  PubMed  Google Scholar 

  118. Oldenhove G, Bouladoux N, Wohlfert EA, Hall JA, Chou D, Dos Santos L, O’Brien S, Blank R, Lamb E, Natarajan S et al (2009) Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31:772–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W, Luche H, Fehling HJ, Bluestone JA (2013) Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39:949–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8:1353–1362

    Article  CAS  PubMed  Google Scholar 

  123. Gasteiger G, Hemmers S, Firth MA, Le Floc’h A, Huse M, Sun JC, Rudensky AY (2013) IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med 210:1167–1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Sitrin J, Ring A, Garcia KC, Benoist C, Mathis D (2013) Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J Exp Med 210:1153–1165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. McNally A, Hill GR, Sparwasser T, Thomas R, Steptoe RJ (2011) CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci U S A 108:7529–7534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. McNally A, McNally M, Galea R, Thomas R, Steptoe RJ (2014) Immunogenic, but not steady-state, antigen presentation permits regulatory T-cells to control CD8+ T-cell effector differentiation by IL-2 modulation. PLoS One 9:e85455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. de Goer de Herve MG, Jaafoura S, Vallee M, Taoufik Y (2012) FoxP3(+) regulatory CD4 T cells control the generation of functional CD8 memory. Nat Commun 3:986

    Article  CAS  Google Scholar 

  128. Kastenmuller W, Gasteiger G, Subramanian N, Sparwasser T, Busch DH, Belkaid Y, Drexler I, Germain RN (2011) Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J Immunol 187:3186–3197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Leon B, Bradley JE, Lund FE, Randall TD, Ballesteros-Tato A (2014) FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun 5:3495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernandez-Santos N, Edgerton M, Gaffen SL, Lenardo MJ (2011) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34:422–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196:851–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 196:389–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL (2002) CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 196:401–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H (2002) Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J Immunol 168:5558–5565

    Article  CAS  PubMed  Google Scholar 

  136. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, Defor T, Levine BL, June CH, Rubinstein P et al (2011) Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117:1061–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, Del Papa B, Zei T, Ostini RI, Cecchini D et al (2011) Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117:3921–3928

    Article  PubMed  CAS  Google Scholar 

  138. Trzonkowski P, Bieniaszewska M, Juscinska J, Dobyszuk A, Krzystyniak A, Marek N, Mysliwska J, Hellmann A (2009) First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127− T regulatory cells. Clin Immunol 133:22–26

    Article  CAS  PubMed  Google Scholar 

  139. von Herrath M, Nepom GT (2009) Animal models of human type 1 diabetes. Nat Immunol 10:129–132

    Article  CAS  Google Scholar 

  140. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    Article  CAS  PubMed  Google Scholar 

  141. Billiard F, Litvinova E, Saadoun D, Djelti F, Klatzmann D, Cohen JL, Marodon G, Salomon BL (2006) Regulatory and effector T cell activation levels are prime determinants of in vivo immune regulation. J Immunol 177:2167–2174

    Article  CAS  PubMed  Google Scholar 

  142. Feuerer M, Shen Y, Littman DR, Benoist C, Mathis D (2009) How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31:654–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Garg G, Tyler JR, Yang JH, Cutler AJ, Downes K, Pekalski M, Bell GL, Nutland S, Peakman M, Todd JA et al (2012) Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J Immunol 188:4644–4653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Serreze DV, Hamaguchi K, Leiter EH (1989) Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmun 2:759–776

    Article  CAS  PubMed  Google Scholar 

  145. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, Cagnard N, Carpentier W, Tang Q, Bluestone J et al (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207:1871–1878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE et al (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126

    Article  CAS  PubMed  Google Scholar 

  147. Hartemann A, Bensimon G, Payan CA, Jacqueminet S, Bourron O, Nicolas N, Fonfrede M, Rosenzwajg M, Bernard C, Klatzmann D (2013) Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1:295–305

    Article  CAS  PubMed  Google Scholar 

  148. Mizui M, Koga T, Lieberman LA, Beltran J, Yoshida N, Johnson MC, Tisch R, Tsokos GC (2014) IL-2 protects lupus-prone mice from multiple end-organ damage by limiting CD4−CD8− IL-17-producing T cells. J Immunol 193:2168–2177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Dinh TN, Kyaw TS, Kanellakis P, To K, Tipping P, Toh BH, Bobik A, Agrotis A (2012) Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 126:1256–1266

    Article  CAS  PubMed  Google Scholar 

  150. Polhill T, Zhang GY, Hu M, Sawyer A, Zhou JJ, Saito M, Webster KE, Wang Y, Wang Y, Grey ST et al (2012) IL-2/IL-2Ab complexes induce regulatory T cell expansion and protect against proteinuric CKD. J Am Soc Nephrol 23:1303–1308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Webster KE, Walters S, Kohler RE, Mrkvan T, Boyman O, Surh CD, Grey ST, Sprent J (2009) In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med 206:751–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Shin HJ, Baker J, Leveson-Gower DB, Smith AT, Sega EI, Negrin RS (2011) Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood 118:2342–2350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Pilon CB, Petillon S, Naserian S, Martin GH, Badoual C, Lang P, Azoulay D, Piaggio E, Grimbert P, Cohen JL (2014) Administration of low doses of IL-2 combined to rapamycin promotes allogeneic skin graft survival in mice. Am J Transplant 14:2874–2882

    Article  CAS  PubMed  Google Scholar 

  154. Saadoun D, Rosenzwajg M, Joly F, Six A, Carrat F, Thibault V, Sene D, Cacoub P, Klatzmann D (2011) Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 365:2067–2077

    Article  CAS  PubMed  Google Scholar 

  155. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea EP III, Armand P, Cutler C, Ho VT, Treister NS et al (2011) Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 365:2055–2066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Matsuoka K, Koreth J, Kim HT, Bascug G, McDonough S, Kawano Y, Murase K, Cutler C, Ho VT, Alyea EP et al (2013) Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci Transl Med 5:179ra143

    Article  CAS  Google Scholar 

  157. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    Article  CAS  PubMed  Google Scholar 

  158. Rabinovitch A, Suarez-Pinzon WL, Shapiro AM, Rajotte RV, Power R (2002) Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes 51:638–645

    Article  CAS  PubMed  Google Scholar 

  159. Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, Ahmann A, Rabinovitch A, Aggarwal S, Phippard D et al (2012) Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes 61:2340–2348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Vokaer B, Charbonnier LM, Lemaitre PH, Le Moine A (2012) Impact of interleukin-2-expanded regulatory T cells in various allogeneic combinations on mouse skin graft survival. Transplant Proc 44:2840–2844

    Article  CAS  PubMed  Google Scholar 

  161. Sykes M, Abraham VS, Harty MW, Pearson DA (1993) IL-2 reduces graft-versus-host disease and preserves a graft-versus-leukemia effect by selectively inhibiting CD4+ T cell activity. J Immunol 150:197–205

    CAS  PubMed  Google Scholar 

  162. Sykes M, Romick ML, Hoyles KA, Sachs DH (1990) In vivo administration of interleukin 2 plus T cell-depleted syngeneic marrow prevents graft-versus-host disease mortality and permits alloengraftment. J Exp Med 171:645–658

    Article  CAS  PubMed  Google Scholar 

  163. Sykes M, Romick ML, Sachs DH (1990) Interleukin 2 prevents graft-versus-host disease while preserving the graft-versus-leukemia effect of allogeneic T cells. Proc Natl Acad Sci U S A 87:5633–5637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Perol L, Martin GH, Maury S, Cohen JL, Piaggio E (2014) Potential limitations of IL-2 administration for the treatment of experimental acute graft-versus-host disease. Immunol Lett 162:173–184

    Article  CAS  PubMed  Google Scholar 

  165. Goudy KS, Johnson MC, Garland A, Li C, Samulski RJ, Wang B, Tisch R (2011) Inducible adeno-associated virus-mediated IL-2 gene therapy prevents autoimmune diabetes. J Immunol 186:3779–3786

    Article  CAS  PubMed  Google Scholar 

  166. Churlaud G, Jimenez V, Ruberte J, Amadoudji Zin M, Fourcade G, Gottrand G, Casana E, Lambrecht B, Bellier B, Piaggio E et al (2014) Sustained stimulation and expansion of Tregs by IL2 control autoimmunity without impairing immune responses to infection, vaccination and cancer. Clin Immunol 151:114–126

    Article  CAS  PubMed  Google Scholar 

  167. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J (2006) Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311:1924–1927

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Pérol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pérol, L., Piaggio, E. (2016). New Molecular and Cellular Mechanisms of Tolerance: Tolerogenic Actions of IL-2. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 1371. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3139-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3139-2_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3138-5

  • Online ISBN: 978-1-4939-3139-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics