Skip to main content

Humanized Mice as Preclinical Models in Transplantation

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1371))

Abstract

Animal models have been instrumental in our understanding of the mechanisms of rejection and the testing of novel treatment options in the context of transplantation. We have now entered an exciting era with research on humanized mice driving advances in translational studies and in our understanding of the function of human cells in response to pathogens and cancer as well as the recognition of human allogeneic tissues in vivo. In this chapter we provide a historical overview of humanized mouse models of transplantation to date, outlining the distinct strains and share our experiences in the study of human transplantation immunology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028

    Article  CAS  PubMed  Google Scholar 

  2. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  3. Bosma GC, Davisson MT, Ruetsch NR, Sweet HO, Shultz LD, Bosma MJ (1989) The mouse mutation severe combined immune deficiency (SCID) is on chromosome 16. Immunogenetics 29:54–57

    Article  CAS  PubMed  Google Scholar 

  4. Malynn BA, Blackwell TK, Fulop GM, Rathbun GA, Furley AJ, Ferrier P, Heinke LB, Phillips RA, Yancopoulos GD, Alt FW (1988) The scid defect affects the final step of the immunoglobulin VDJ recombinase mechanism. Cell 54:453–460

    Article  CAS  PubMed  Google Scholar 

  5. Schuler W, Weiler IJ, Schuler A, Phillips RA, Rosenberg N, Mak TW, Kearney JF, Perry RP, Bosma MJ (1986) Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46:963–972

    Article  CAS  PubMed  Google Scholar 

  6. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259

    Article  CAS  PubMed  Google Scholar 

  7. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255:1137–1141

    Article  CAS  PubMed  Google Scholar 

  8. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  CAS  PubMed  Google Scholar 

  9. Fulop GM, Phillips RA (1990) The scid mutation in mice causes a general defect in DNA repair. Nature 347:479–482

    Article  CAS  PubMed  Google Scholar 

  10. Greiner DL, Hesselton RA, Shultz LD (1998) SCID mouse models of human stem cell engraftment. Stem Cells 16:166–177

    Article  CAS  PubMed  Google Scholar 

  11. Shiroki R, Poindexter NJ, Woodle ES, Hussain MS, Mohanakumar T, Scharp DW (1994) Human peripheral blood lymphocyte reconstituted severe combined immunodeficient (hu-PBL-SCID) mice. A model for human islet allograft rejection. Transplantation 57:1555–1562

    Article  CAS  PubMed  Google Scholar 

  12. Olive C, Cheung C, Falk MC (1998) T cell engraftment in lymphoid tissues of human peripheral blood lymphocyte reconstituted SCID mice with or without prior activation of cells. Immunol Cell Biol 76:520–525

    Article  CAS  PubMed  Google Scholar 

  13. Shibata S, Asano T, Noguchi A, Naito M, Ogura A, Doi K (1998) Peritoneal macrophages play an important role in eliminating human cells from severe combined immunodeficient mice transplanted with human peripheral blood lymphocytes. Immunology 93:524–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867

    Article  CAS  PubMed  Google Scholar 

  15. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877

    Article  CAS  PubMed  Google Scholar 

  16. Yamauchi T, Takenaka K, Urata S, Shima T, Kikushige Y, Tokuyama T, Iwamoto C, Nishihara M, Iwasaki H, Miyamoto T, Honma N, Nakao M, Matozaki T, Akashi K (2013) Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood 121:1316–1325

    Article  CAS  PubMed  Google Scholar 

  17. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    CAS  PubMed  Google Scholar 

  18. Prochazka M, Gaskins HR, Shultz LD, Leiter EH (1992) The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci U S A 89:3290–3294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Berney T, Molano RD, Pileggi A, Cattan P, Li H, Ricordi C, Inverardi L (2001) Patterns of engraftment in different strains of immunodeficient mice reconstituted with human peripheral blood lymphocytes. Transplantation 72:133–140

    Article  CAS  PubMed  Google Scholar 

  20. Steinsvik TE, Gaarder PI, Aaberge IS, Lovik (1995) Engraftment and humoral immunity in SCID and RAG-2-deficient mice transplanted with human peripheral blood lymphocytes. Scand J Immunol 42:607–616

    Article  CAS  PubMed  Google Scholar 

  21. Martin A, Valentine M, Unger P, Yeung SW, Shultz LD, Davies TF (1994) Engraftment of human lymphocytes and thyroid tissue into scid and rag2-deficient mice: absent progression of lymphocytic infiltration. J Clin Endocrinol Metab 79:716–723

    CAS  PubMed  Google Scholar 

  22. Shultz LD, Lang PA, Christianson SW, Gott B, Lyons B, Umeda S, Leiter E, Hesselton R, Wagar EJ, Leif JH, Kollet O, Lapidot T, Greiner DL (2000) NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J Immunol 164:2496–2507

    Article  CAS  PubMed  Google Scholar 

  23. Mosier DE, Stell KL, Gulizia RJ, Torbett BE, Gilmore GL (1993) Homozygous scid/scid;beige/beige mice have low levels of spontaneous or neonatal T cell-induced B cell generation. J Exp Med 177:191–194

    Article  CAS  PubMed  Google Scholar 

  24. Christianson SW, Greiner DL, Schweitzer IB, Gott B, Beamer GL, Schweitzer PA, Hesselton RM, Shultz LD (1996) Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cell Immunol 171:186–199

    CAS  PubMed  Google Scholar 

  25. Takizawa Y, Saida T, Tokuda Y, Dohi S, Wang YL, Urano K, Hioki K, Ueyama Y (1997) New immunodeficient (nude-scid, beige-scid) mice as excellent recipients of human skin grafts containing intraepidermal neoplasms. Arch Dermatol Res 289:213–218

    Article  CAS  PubMed  Google Scholar 

  26. Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 172:974–982

    Article  CAS  PubMed  Google Scholar 

  27. Lowry PA, Shultz LD, Greiner DL, Hesselton RM, Kittler EL, Tiarks CY, Rao SS, Reilly J, Leif JH, Ramshaw H, Stewart FM, Quesenberry PJ (1996) Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients. Biol Blood Marrow Transplant 2:15–23

    CAS  PubMed  Google Scholar 

  28. Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB, Rajan TV, Gott B, Roopenian DC, Shultz LD (1997) Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 158:3578–3586

    CAS  PubMed  Google Scholar 

  29. de Sousa M, Reimao R, Lacerda R, Hugo P, Kaufmann SH, Porto G (1994) Iron overload in beta 2-microglobulin-deficient mice. Immunol Lett 39:105–111

    Article  PubMed  Google Scholar 

  30. Ito M, Kobayashi K, Nakahata T (2008) NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 324:53–76

    CAS  PubMed  Google Scholar 

  31. Shultz LD, Brehm MA, Bavari S, Greiner DL (2011) Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50–54

    Article  PubMed Central  PubMed  Google Scholar 

  32. Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J, Burzenski L, Gott B, Foreman O, Kavirayani A, Herlihy M, Rossini AA, Shultz LD, Greiner DL (2010) Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol 135:84–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, Ablamunits V, Kirkiles-Smith N, Herold KC, Donis RO, Bothwell AL, Pober JS, Harding MJ (2009) Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac−/−, Balb/c-Rag1−/−gammac−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 70:790–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, Dick JE, Danska JS (2007) Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 8:1313–1323

    Article  CAS  PubMed  Google Scholar 

  35. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA (2011) Transgenic expression of human signal regulatory protein alpha in Rag2−/−gamma(c)−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci U S A 108:13218–13223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG (2013) Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 31:635–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA (2011) Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 32:321–327

    Article  CAS  PubMed  Google Scholar 

  38. van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, Maijoor KA, Weijer K, Cornelissen JJ, Blom B, Di Santo JP, Spits H, Legrand N (2009) IL-7 enhances thymic human T cell development in “human immune system” Rag2−/−IL-2Rgammac−/− mice without affecting peripheral T cell homeostasis. J Immunol 183:7645–7655

    Article  PubMed  CAS  Google Scholar 

  39. Huntington ND, Alves NL, Legrand N, Lim A, Strick-Marchand H, Mention JJ, Plet A, Weijer K, Jacques Y, Becker PD, Guzman C, Soussan P, Kremsdorf D, Spits H, Di Santo JP (2011) IL-15 transpresentation promotes both human T-cell reconstitution and T-cell-dependent antibody responses in vivo. Proc Natl Acad Sci U S A 108:6217–6222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A, Corcuff E, Mortier E, Jacques Y, Spits H, Di Santo JP (2009) IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 206:25–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Chen Q, Khoury M, Chen J (2009) Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A 106:21783–21788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. O’Connell RM, Balazs AB, Rao DS, Kivork C, Yang L, Baltimore D (2010) Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. PLoS One 5:e12009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A (2011) Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood 117:3076–3086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rongvaux A, Eynon EE, Manz MG, Flavell RA (2011) Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 118:3119–3128

    Article  CAS  PubMed  Google Scholar 

  45. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ, Auerbach W, Eynon EE, Stevens S, Manz MG, Flavell RA (2011) Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci U S A 108:2390–2395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, Valenzuela DM, Yancopoulos GD, Eynon EE, Stevens S, Manz MG, Flavell RA (2011) Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A 108:2378–2383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, Saito Y, Marches F, Halene S, Palucka AK, Manz MG, Flavell RA (2014) Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 32:364–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. van Rijn RS, Simonetti ER, Hagenbeek A, Hogenes MC, de Weger RA, Canninga-van Dijk MR, Weijer K, Spits H, Storm G, van Bloois L, Rijkers G, Martens AC, Ebeling SB (2003) A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− gammac−/− double-mutant mice. Blood 102:2522–2531

    Article  PubMed  CAS  Google Scholar 

  49. Nevozhay D, Opolski A (2006) Key factors in experimental mouse hematopoietic stem cell transplantation. Arch Immunol Ther Exp (Warsz) 54:253–269

    Article  Google Scholar 

  50. Becker PD, Legrand N, van Geelen CM, Noerder M, Huntington ND, Lim A, Yasuda E, Diehl SA, Scheeren FA, Ott M, Weijer K, Wedemeyer H, Di Santo JP, Beaumont T, Guzman CA, Spits H (2010) Generation of human antigen-specific monoclonal IgM antibodies using vaccinated “human immune system” mice. PLoS One 5

    Google Scholar 

  51. Villaudy J, Schotte R, Legrand N, Spits H (2014) Critical assessment of human antibody generation in humanized mouse models. J Immunol Methods 410C:18–27

    Article  CAS  Google Scholar 

  52. Huntington ND, Alves NL, Legrand N, Lim A, Strick-Marchand H, Plet A, Weijer K, Jacques Y, Spits H, Di Santo JP (2011) Autonomous and extrinsic regulation of thymopoiesis in human immune system (HIS) mice. Eur J Immunol 41:2883–2893

    Article  CAS  PubMed  Google Scholar 

  53. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A, Cohen JI, Munz C (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206:1423–1434

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Billerbeck E, Horwitz JA, Labitt RN, Donovan BM, Vega K, Budell WC, Koo GC, Rice CM, Ploss A (2013) Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J Immunol 191:1753–1764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Serra-Hassoun M, Bourgine M, Boniotto M, Berges J, Langa F, Michel ML, Freitas AA, Garcia S (2014) Human hematopoietic reconstitution and HLA-restricted responses in nonpermissive alymphoid mice. J Immunol 193:1504–1511

    Article  CAS  PubMed  Google Scholar 

  56. Lavender KJ, Messer RJ, Race B, Hasenkrug KJ (2014) Production of bone marrow, liver, thymus (BLT) humanized mice on the C57BL/6 Rag2(−/−)gammac(−/−)CD47(−/−) background. J Immunol Methods 407:127–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lavender KJ, Pang WW, Messer RJ, Duley AK, Race B, Phillips K, Scott D, Peterson KE, Chan CK, Dittmer U, Dudek T, Allen TM, Weissman IL, Hasenkrug KJ (2013) BLT-humanized C57BL/6 Rag2−/−gammac−/−CD47−/− mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood 122:4013–4020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Schafer C, Petzold A, Weisbach H, Heidkamp G, Purbojo A, Cesnjevar R, Platz A, Bornhauser M, Schmitz M, Dudziak D, Hauber J, Kirberg J, Waskow C (2014) Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 15:227–238

    Article  CAS  PubMed  Google Scholar 

  59. Denton PW, Nochi T, Lim A, Krisko JF, Martinez-Torres F, Choudhary SK, Wahl A, Olesen R, Zou W, Di Santo JP, Margolis DM, Garcia JV (2012) IL-2 receptor gamma-chain molecule is critical for intestinal T-cell reconstitution in humanized mice. Mucosal Immunol 5:555–566

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Nochi T, Denton PW, Wahl A, Garcia JV (2013) Cryptopatches are essential for the development of human GALT. Cell Rep 3:1874–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Tary-Lehmann M, Saxon A, Lehmann PV (1995) The human immune system in hu-PBL-SCID mice. Immunol Today 16:529–533

    Article  CAS  PubMed  Google Scholar 

  63. Ito R, Katano I, Kawai K, Hirata H, Ogura T, Kamisako T, Eto T, Ito M (2009) Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation 87:1654–1658

    Article  CAS  PubMed  Google Scholar 

  64. Nervi B, Rettig MP, Ritchey JK, Wang HL, Bauer G, Walker J, Bonyhadi ML, Berenson RJ, Prior JL, Piwnica-Worms D, Nolta JA, DiPersio JF (2007) Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID beta2mnull mice. Exp Hematol 35:1823–1838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J, Laning J, Fodor W, Foreman O, Burzenski L, Chase TH, Gott B, Rossini AA, Bortell R, Shultz LD, Greiner DL (2009) Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 157:104–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Martino G, Anastasi J, Feng J, Mc Shan C, DeGroot L, Quintans J, Grimaldi LM (1993) The fate of human peripheral blood lymphocytes after transplantation into SCID mice. Eur J Immunol 23:1023–1028

    Article  CAS  PubMed  Google Scholar 

  67. Ali N, Flutter B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, Lombardi G, Nestle FO (2012) Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rgammanull mice display a T-effector memory phenotype. PLoS One 7:e44219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Schroeder MA, DiPersio JF (2011) Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech 4:318–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Lee WP, Yaremchuk MJ, Pan YC, Randolph MA, Tan CM, Weiland AJ (1991) Relative antigenicity of components of a vascularized limb allograft. Plast Reconstr Surg 87:401–411

    Article  CAS  PubMed  Google Scholar 

  70. Alegre ML, Peterson LJ, Jeyarajah DR, Weiser M, Bluestone JA, Thistlethwaite JR (1994) Severe combined immunodeficient mice engrafted with human splenocytes have functional human T cells and reject human allografts. J Immunol 153:2738–2749

    CAS  PubMed  Google Scholar 

  71. Murray AG, Petzelbauer P, Hughes CC, Costa J, Askenase P, Pober JS (1994) Human T-cell-mediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse. Proc Natl Acad Sci U S A 91:9146–9150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kawamura T, Niguma T, Fechner JH Jr, Wolber R, Beeskau MA, Hullett DA, Sollinger HW, Burlingham WJ (1992) Chronic human skin graft rejection in severe combined immunodeficient mice engrafted with human PBL from an HLA-presensitized donor. Transplantation 53:659–665

    Article  CAS  PubMed  Google Scholar 

  73. Roder JC, Helfand SL, Werkmeister J, McGarry R, Beaumont TJ, Duwe A (1982) Oxygen intermediates are triggered early in the cytolytic pathway of human NK cells. Nature 298:569–572

    Article  CAS  PubMed  Google Scholar 

  74. Kirkiles-Smith NC, Harding MJ, Shepherd BR, Fader SA, Yi T, Wang Y, McNiff JM, Snyder EL, Lorber MI, Tellides G, Pober JS (2009) Development of a humanized mouse model to study the role of macrophages in allograft injury. Transplantation 87:189–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M (2001) 11-Color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7:245–248

    Article  PubMed  CAS  Google Scholar 

  76. Shiao SL, Kirkiles-Smith NC, Shepherd BR, McNiff JM, Carr EJ, Pober JS (2007) Human effector memory CD4+ T cells directly recognize allogeneic endothelial cells in vitro and in vivo. J Immunol 179:4397–4404

    Article  CAS  PubMed  Google Scholar 

  77. Racki WJ, Covassin L, Brehm M, Pino S, Ignotz R, Dunn R, Laning J, Graves SK, Rossini AA, Shultz LD, Greiner DL (2010) NOD-scid IL2rgamma(null) mouse model of human skin transplantation and allograft rejection. Transplantation 89:527–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Issa F, Hester J, Goto R, Nadig SN, Goodacre TE, Wood K (2010) Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation 90:1321–1327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Putnam AL, Safinia N, Medvec A, Laszkowska M, Wray M, Mintz MA, Trotta E, Szot GL, Liu W, Lares A, Lee K, Laing A, Lechler RI, Riley JL, Bluestone JA, Lombardi G, Tang Q (2013) Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am J Transplant 13:3010–3020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sagoo P, Ali N, Garg G, Nestle FO, Lechler RI, Lombardi G (2011) Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells. Sci Transl Med 3:83ra42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Fiorina P, Secchi A (2007) Pancreatic islet cell transplant for treatment of diabetes. Endocrinol Metab Clin North Am 36:999–1013, ix

    Article  CAS  PubMed  Google Scholar 

  82. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069

    Article  CAS  PubMed  Google Scholar 

  83. Wood KJ, Bushell A, Hester J (2012) Regulatory immune cells in transplantation. Nat Rev Immunol 12:417–430

    Article  CAS  PubMed  Google Scholar 

  84. Fiorina P, Voltarelli J, Zavazava N (2011) Immunological applications of stem cells in type 1 diabetes. Endocr Rev 32:725–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Xiao F, Ma L, Zhao M, Huang G, Mirenda V, Dorling A, Lechler R, Lombardi G (2014) Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rgammanull mice. PLoS One 9:e90387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. London NJ, Thirdborough SM, Swift SM, Bell PR, James RF (1991) The diabetic “human reconstituted” severe combined immunodeficient (SCID-hu) mouse: a model for isogeneic, allogeneic, and xenogeneic human islet transplantation. Transplant Proc 23:749

    CAS  PubMed  Google Scholar 

  87. King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M, Atkinson MA, Wasserfall C, Herold KC, Woodland RT, Schmidt MR, Woda BA, Thompson MJ, Rossini AA, Greiner DL (2008) A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 126:303–314

    Article  CAS  PubMed  Google Scholar 

  88. Wu DC, Hester J, Nadig SN, Zhang W, Trzonkowski P, Gray D, Hughes S, Johnson P, Wood KJ (2013) Ex vivo expanded human regulatory T cells can prolong survival of a human islet allograft in a humanized mouse model. Transplantation 96:707–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Matsumura T, Kametani Y, Ando K, Hirano Y, Katano I, Ito R, Shiina M, Tsukamoto H, Saito Y, Tokuda Y, Kato S, Ito M, Motoyoshi K, Habu S (2003) Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol 31:789–797

    Article  PubMed  Google Scholar 

  90. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO, Behnke S, Frey J, Oxenius A, Joller H, Aguzzi A, Manz MG, Speck RF (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2−/−gamma c−/− mice. Proc Natl Acad Sci U S A 103:15951–15956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A 107:13022–13027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N, Tsuchiya S, Sugamura K (2009) The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol 21:843–858

    Article  CAS  PubMed  Google Scholar 

  93. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD, Casares S (2011) Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS One 6:e19826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Chen D, Zhang N, Fu S, Schroppel B, Guo Q, Garin A, Lira SA, Bromberg JS (2006) CD4+ CD25+ regulatory T-cells inhibit the islet innate immune response and promote islet engraftment. Diabetes 55:1011–1021

    Article  CAS  PubMed  Google Scholar 

  95. Harrison OJ, Powrie FM (2013) Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 5

    Google Scholar 

  96. Libby P, Pober JS (2001) Chronic rejection. Immunity 14:387–397

    Article  CAS  PubMed  Google Scholar 

  97. Nadig SN, Wieckiewicz J, Wu DC, Warnecke G, Zhang W, Luo S, Schiopu A, Taggart DP, Wood KJ (2010) In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nat Med 16:809–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Hester J, Schiopu A, Nadig SN, Wood KJ (2012) Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. Am J Transplant 12:2008–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS, Lorber MI, Pober JS (2000) Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature 403:207–211

    Article  CAS  PubMed  Google Scholar 

  100. Lorber MI, Wilson JH, Robert ME, Schechner JS, Kirkiles N, Qian HY, Askenase PW, Tellides G, Pober JS (1999) Human allogeneic vascular rejection after arterial transplantation and peripheral lymphoid reconstitution in severe combined immunodeficient mice. Transplantation 67:897–903

    Article  CAS  PubMed  Google Scholar 

  101. Pober JS, Bothwell AL, Lorber MI, McNiff JM, Schechner JS, Tellides G (2003) Immunopathology of human T cell responses to skin, artery and endothelial cell grafts in the human peripheral blood lymphocyte/severe combined immunodeficient mouse. Springer Semin Immunopathol 25:167–180

    Article  CAS  PubMed  Google Scholar 

  102. Abele-Ohl S, Leis M, Mahmoudian S, Weyand M, Stamminger T, Ensminger SM (2010) Rag2−/− gamma-chain−/− mice as hosts for human vessel transplantation and allogeneic human leukocyte reconstitution. Transpl Immunol 23:59–64

    Article  CAS  PubMed  Google Scholar 

  103. Feng G, Nadig SN, Backdahl L, Beck S, Francis RS, Schiopu A, Whatcott A, Wood KJ, Bushell A (2011) Functional regulatory T cells produced by inhibiting cyclic nucleotide phosphodiesterase type 3 prevent allograft rejection. Sci Transl Med 3:83ra40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Safinia, N., Becker, P.D., Vaikunthanathan, T., Xiao, F., Lechler, R., Lombardi, G. (2016). Humanized Mice as Preclinical Models in Transplantation. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 1371. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3139-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3139-2_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3138-5

  • Online ISBN: 978-1-4939-3139-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics