Skip to main content

Probe Design Strategies for Oligonucleotide Microarrays

  • Protocol
Book cover Microarray Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1368))

Abstract

Oligonucleotide microarrays have been widely used for gene detection and/or quantification of gene expression in various samples ranging from a single organism to a complex microbial assemblage. The success of a microarray experiment, however, strongly relies on the quality of designed probes. Consequently, probe design is of critical importance and therefore multiple parameters should be considered for each probe in order to ensure high specificity, sensitivity, and uniformity as well as potentially quantitative power. Moreover, to assess the complete gene repertoire of complex biological samples such as those studied in the field of microbial ecology, exploratory probe design strategies must be also implemented to target not-yet-described sequences. To design such probes, two algorithms, KASpOD and HiSpOD, have been developed and they are available via two user-friendly web services. Here, we describe the use of this software necessary for the design of highly effective probes especially in the context of microbial oligonucleotide microarrays by taking into account all the crucial parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiquia SM, Wu L, Chong SC et al. (2004) Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples, BioTechniques. 36: 664–70– 672– 674–5

    Google Scholar 

  2. Marcelino LA, Backman V, Donaldson A et al (2006) Accurately quantifying low-abundant targets amid similar sequences by revealing hidden correlations in oligonucleotide microarray data. Proc Natl Acad Sci U S A 103:13629–13634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dugat-Bony E, Missaoui M, Peyretaillade E et al (2011) HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27:641–648

    Article  CAS  PubMed  Google Scholar 

  4. Loy A, Bodrossy L (2006) Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 363:106–119

    Article  CAS  PubMed  Google Scholar 

  5. Wagner M, Smidt H, Loy A et al (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53:498–506

    Article  CAS  PubMed  Google Scholar 

  6. Dugat-Bony E, Peyretaillade E, Parisot N et al (2012) Detecting unknown sequences with DNA microarrays: explorative probe design strategies. Environ Microbiol 14:356–371

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294

    Article  CAS  PubMed  Google Scholar 

  8. Loy A, Lehner A, Lee N et al (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wilson KH, Wilson WJ, Radosevich JL et al (2002) High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol 68:2535–2541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brodie EL, DeSantis TZ, Joyner DC et al (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Palmer C, Bik EM, Eisen MB et al (2006) Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 34:e5

    Article  PubMed Central  PubMed  Google Scholar 

  12. Brodie EL, DeSantis TZ, Parker JPM et al (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. DeSantis TZ, Brodie EL, Moberg JP et al (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  CAS  PubMed  Google Scholar 

  14. Hazen TC, Dubinsky EA, DeSantis TZ et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  PubMed  Google Scholar 

  15. Hazen TC, Rocha AM, Techtmann SM (2013) Advances in monitoring environmental microbes. Curr Opin Biotechnol 24:526–533

    Article  CAS  PubMed  Google Scholar 

  16. Militon C, Rimour S, Missaoui M et al (2007) PhylArray: phylogenetic probe design algorithm for microarray. Bioinformatics 23:2550–2557

    Article  CAS  PubMed  Google Scholar 

  17. Parisot N, Denonfoux J, Dugat-Bony E et al (2012) KASpOD--a web service for highly specific and explorative oligonucleotide design. Bioinformatics 28:3161–3162

    Article  CAS  PubMed  Google Scholar 

  18. He Z, Van Nostrand JD, Wu L et al (2008) Development and application of functional gene arrays for microbial community analysis. Trans Nonferrous Metals Soc China 18:1319–1327

    Article  CAS  Google Scholar 

  19. Lemoine S, Combes F, Le Crom S (2009) An evaluation of custom microarray applications: the oligonucleotide design challenge. Nucleic Acids Res 37:1726–1739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    Article  CAS  PubMed  Google Scholar 

  24. Kane MD, Jatkoe TA, Stumpf CR et al (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 28:4552–4557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Parisot N, Denonfoux J, Dugat-Bony E et al. (2014) Software tools for the selection of oligonucleotide probes for microarrays. In Microarrays: current technology, innovations and applications, Z. He, ed. (Norfolk, UK: Caister Academic Press)

    Google Scholar 

  26. Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bader KC, Grothoff C, Meier H (2011) Comprehensive and relaxed search for oligonucleotide signatures in hierarchically clustered sequence datasets. Bioinformatics 27:1546–1554

    Article  CAS  PubMed  Google Scholar 

  28. Tu Q, He Z, Deng Y et al (2013) Strain/species-specific probe design for microbial identification microarrays. Appl Environ Microbiol 79(16):5085–5088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Severgnini M, Cremonesi P, Consolandi C et al (2009) ORMA: a tool for identification of species-specific variations in 16S rRNA gene and oligonucleotides design. Nucleic Acids Res 37:e109

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fredrickson HL, Perkins EJ, Bridges TS et al (2001) Towards environmental toxicogenomics — development of a flow-through, high-density DNA hybridization array and its application to ecotoxicity assessment. Sci Total Environ 274:137–149

    Article  CAS  PubMed  Google Scholar 

  31. Feng S, Tillier ER (2007) A fast and flexible approach to oligonucleotide probe design for genomes and gene families. Bioinformatics 23:1195–1202

    Article  CAS  PubMed  Google Scholar 

  32. Bozdech Z, Zhu J, Joachimiak MP et al (2003) Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol 4:R9

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ilie L, Mohamadi H, Golding GB et al (2013) BOND: basic oligonucleotide design. BMC Bioinformatics 14:69–69

    Article  PubMed Central  PubMed  Google Scholar 

  34. Li X, He Z, Zhou J (2005) Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res 33:6114–6123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Li W, Ying X (2006) Mprobe 2.0: computer-aided probe design for oligonucleotide microarray. Appl Bioinforma 5:181–186

    Article  CAS  Google Scholar 

  36. Rouillard J-M, Zuker M, Gulari E (2003) OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31:3057–3062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wang X, Seed B (2003) Selection of oligonucleotide probes for protein coding sequences. Bioinformatics 19:796–802

    Article  CAS  PubMed  Google Scholar 

  38. Wernersson R, Nielsen HB (2005) OligoWiz 2.0 – integrating sequence feature annotation into the design of microarray probes. Nucleic Acids Res 33:W611–W615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Xu D, Li G, Wu L et al (2002) PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics 18:1432–1437

    Article  CAS  PubMed  Google Scholar 

  40. Chen SH, Lo CZ, Su SY et al (2010) UPS 2.0: unique probe selector for probe design and oligonucleotide microarrays at the pangenomic/genomic level. BMC Genomics 11(Suppl 4):S6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rouchka EC, Khalyfa A, Cooper NGF (2005) MPrime: efficient large scale multiple primer and oligonucleotide design for customized gene microarrays. BMC Bioinformatics 6:175

    Article  PubMed Central  PubMed  Google Scholar 

  42. Talla E, Tekaia F, Brino L et al (2003) A novel design of whole-genome microarray probes for Saccharomyces cerevisiae which minimizes cross-hybridization. BMC Genomics 4:38

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chou HH, Hsia AP, Mooney DL et al (2004) Picky: oligo microarray design for large genomes. Bioinformatics 20:2893–2902

    Article  CAS  PubMed  Google Scholar 

  44. Li F, Stormo GD (2001) Selection of optimal DNA oligos for gene expression arrays. Bioinformatics 17:1067–1076

    Article  CAS  PubMed  Google Scholar 

  45. Dufour YS, Wesenberg GE, Tritt AJ et al (2010) chipD: a web tool to design oligonucleotide probes for high-density tiling arrays. Nucleic Acids Res 38:W321–W325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ryder E, Jackson R, Ferguson-Smith A et al (2006) MAMMOT--a set of tools for the design, management and visualization of genomic tiling arrays. Bioinformatics 22:883–884

    Article  CAS  PubMed  Google Scholar 

  47. Patel VC, Mondal K, Shetty AC et al (2010) Microarray oligonucleotide probe designer (MOPeD): a web service. Open Access Bioinformatics 2:145–155

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Bertone P, Trifonov V, Rozowsky JS et al (2006) Design optimization methods for genomic DNA tiling arrays. Genome Res 16:271–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Phillippy AM, Deng X, Zhang W et al (2009) Efficient oligonucleotide probe selection for pan-genomic tiling arrays. BMC Bioinformatics 10:293

    Article  PubMed Central  PubMed  Google Scholar 

  50. Jourdren L, Duclos A, Brion C et al (2010) Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments. Nucleic Acids Res 38:e117

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the French “Direction Générale de l’Armement” (DGA) and the programme Investissements d’avenir AMI 2011 VALTEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Peyret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parisot, N., Peyretaillade, E., Dugat-Bony, E., Denonfoux, J., Mahul, A., Peyret, P. (2016). Probe Design Strategies for Oligonucleotide Microarrays. In: Li, P., Sedighi, A., Wang, L. (eds) Microarray Technology. Methods in Molecular Biology, vol 1368. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3136-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3136-1_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3135-4

  • Online ISBN: 978-1-4939-3136-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics