Skip to main content

Preparation of Proteoglycan Mimetic Graft Copolymers

  • Protocol
Macro-Glycoligands

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1367))

Abstract

Proteoglycans are proteins with pendant glycosaminoglycan polysaccharide side chains. The method described here enables the preparation of graft copolymers with glycosaminoglycan side chains, which mimic the structure and composition of proteoglycans. By controlling the stoichiometry, graft copolymers can be obtained with a wide range of glycosaminoglycan side-chain densities. The method presented here uses a three-step reaction mechanism to first functionalize a hyaluronic acid backbone, followed by reductive amination to couple the glycosaminoglycan side chain to the backbone, by the reducing end. Proteoglycan mimics like the ones proposed here could be used to study the structure–property relationships of proteoglycans and to introduce the biochemical and biomechanical properties of proteoglycans into biomaterials and therapeutic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339(1):237–246

    Article  CAS  PubMed  Google Scholar 

  2. Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14(5):617–623

    Article  CAS  PubMed  Google Scholar 

  3. Dudhia J (2005) Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci 62(19-20):2241–2256

    Article  CAS  PubMed  Google Scholar 

  4. Hardingham TE, Fosang AJ (1992) Proteoglycans - many forms and many functions. FASEB J 6(3):861–870

    CAS  PubMed  Google Scholar 

  5. Kolset S, Tveit H (2008) Serglycin–structure and biology. Cell Mol Life Sci 65(7–8):1073–1085

    Article  CAS  PubMed  Google Scholar 

  6. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482

    Article  CAS  PubMed  Google Scholar 

  7. Boddohi S, Kipper MJ (2010) Engineering nanoassemblies of polysaccharides. Adv Mater 22(28):2998–3016

    Article  CAS  PubMed  Google Scholar 

  8. Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J (2006) The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem 281(48):36905–36914

    Article  CAS  PubMed  Google Scholar 

  9. Kenagy RD, Plaas AH, Wight TN (2006) Versican degradation and vascular disease. Trends Cardiovasc Med 16(6):209–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Iozzo RV, Murdoch AD (1996) Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J 10(5):598–614

    CAS  PubMed  Google Scholar 

  11. Schönherr E, Järveläinen H, Sandell L, Wight T (1991) Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem 266(26):17640–17647

    PubMed  Google Scholar 

  12. Weyers A, Linhardt RJ (2013) Neoproteoglycans in tissue engineering. FEBS J 280(10):2511–2522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lee S-G, Brown JM, Rogers CJ, Matson JB, Krishnamurthy C, Rawat M, Hsieh-Wilson LC (2010) End-functionalized glycopolymers as mimetics of chondroitin sulfate proteoglycans. Chem Sci 1(3):322–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Paderi JE, Panitch A (2008) Design of a synthetic collagen-binding peptidoglycan that modulates collagen fibrillogenesis. Biomacromolecules 9(9):2562–2566

    Article  CAS  PubMed  Google Scholar 

  15. Paderi JE, Sistiabudi R, Ivanisevic A, Panitch A (2009) Collagen-binding peptidoglycans: a biomimetic approach to modulate collagen fibrillogenesis for tissue engineering applications. Tissue Eng Part A 15(10):2991–2999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kishore V, Paderi JE, Akkus A, Smith KM, Balachandran D, Beaudoin S, Panitch A, Akkus O (2011) Incorporation of a decorin biomimetic enhances the mechanical properties of electrochemically aligned collagen threads. Acta Biomater 7(6):2428–2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sharma S, Panitch A, Neu CP (2013) Incorporation of an aggrecan mimic prevents proteolytic degradation of anisotropic cartilage analogs. Acta Biomater 9(1):4618–4625

    Article  CAS  PubMed  Google Scholar 

  18. Bernhard JC, Panitch A (2012) Synthesis and characterization of an aggrecan mimic. Acta Biomater 8(4):1543–1550

    Article  CAS  PubMed  Google Scholar 

  19. Su L, Zhao Y, Chen G, Jiang M (2012) Polymeric vesicles mimicking glycocalyx (PV-Gx) for studying carbohydrate–protein interactions in solution. Polym Chem 3(6):1560–1566

    Article  CAS  Google Scholar 

  20. Sarkar S, Lightfoot-Vidal SE, Schauer CL, Vresilovic E, Marcolongo M (2012) Terminal-end functionalization of chondroitin sulfate for the synthesis of biomimetic proteoglycans. Carbohydr Polym 90(1):431–440

    Article  CAS  PubMed  Google Scholar 

  21. Boddohi S, Almodóvar J, Zhang H, Johnson PA, Kipper MJ (2010) Layer-by-layer assembly of polysaccharide-based nanostructured surfaces containing polyelectrolyte complex nanoparticles. Colloids Surf B 77:60–68

    Article  CAS  Google Scholar 

  22. Boddohi S, Moore N, Johnson PA, Kipper MJ (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–1409

    Article  CAS  PubMed  Google Scholar 

  23. Place LW, Sekyi M, Kipper MJ (2014) Aggrecan-mimetic, glycosaminoglycan-containing nanoparticles for growth factor stabilization and delivery. Biomacromolecules 15:680–689

    Article  CAS  PubMed  Google Scholar 

  24. Volpato FZ, Almodovar J, Erickson K, Popat KC, Migliaresi C, Kipper MJ (2012) Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomater 8(4):1551–1559

    Article  Google Scholar 

  25. Place LW, Kelly SM, Kipper MJ (2014) Synthesis and characterization of proteoglycan-mimetic graft copolymers with tunable glycosaminoglycan density. Biomacromolecules 15:3772–3780

    Article  CAS  PubMed  Google Scholar 

  26. Servaty R, Schiller J, Binder H, Arnold K (2001) Hydration of polymeric components of cartilage—an infrared spectroscopic study on hyaluronic acid and chondroitin sulfate. Int J Biol Macromol 28(2):121–127

    Article  CAS  PubMed  Google Scholar 

  27. Pomin VH (2013) NMR chemical shifts in structural biology of glycosaminoglycans. Anal Chem 86(1):65–94

    Article  PubMed  Google Scholar 

  28. Damodaran VB, Place LW, Kipper MJ, Reynolds MM (2012) Enzymatically degradable nitric oxide releasing S-nitrosated dextran thiomers for biomedical applications. J Mater Chem 22(43):23038–23048

    Article  CAS  Google Scholar 

  29. Raddatz S, Mueller-Ibeler J, Kluge J, Wass L, Burdinski G, Havens JR, Onofrey TJ, Wang D, Schweitzer M (2002) Hydrazide oligonucleotides: new chemical modification for chip array attachment and conjugation. Nucleic Acids Res 30(21):4793–4802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sean M. Kelly contributed to the successful demonstration of this technique. We thank Prof. Patrick A. Johnson (University of Wyoming) for access to dynamic light scattering and electrophoretic mobility instrumentation, Prof. Travis S. Bailey (Colorado State University) for helpful discussions, and Prof. Melissa M. Reynolds and Alec Lutzke for assistance with ATR-FTIR. Funding for the original work done to develop this protocol was provided by the National Science Foundation (DMR 0847641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt J. Kipper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kipper, M.J., Place, L.W. (2016). Preparation of Proteoglycan Mimetic Graft Copolymers. In: Sun, XL. (eds) Macro-Glycoligands. Methods in Molecular Biology, vol 1367. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3130-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3130-9_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3129-3

  • Online ISBN: 978-1-4939-3130-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics