Skip to main content

Protecting-Group-Free Synthesis of Well-Defined Glycopolymers Featuring Negatively Charged Oligosaccharides

  • Protocol
Macro-Glycoligands

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1367))

  • 954 Accesses

Abstract

Control of the macromolecular architecture is essential to enable sophisticated functions for glycopolymers and to allow a precise correlation between these functions and the polymer structure. A number of biologically important ligands are negatively charged oligosaccharides that are difficult to manipulate in organic solvent and that are hardly amenable to protection/deprotection strategies. RAFT polymerization is a simple and robust technique that enables the synthesis of well-defined glycopolymers directly in aqueous solution and starting from unprotected vinyl glycomonomers. Here I describe how RAFT polymerization can be combined with reductive amination to transform negatively charged oligosaccharides having 5–20 monosaccharide units into well-defined glycopolymers directly in water and without the need to resort to protecting-group chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sigal GB, Mammen M, Dahmann G, Whitesides GM (1996) Polyacrylamides bearing pendant alpha-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus—the strong inhibition reflects enhanced binding through cooperative polyvalent interactions. J Am Chem Soc 118(16):3789–3800

    Article  CAS  Google Scholar 

  2. Kanai M, Mortell KH, Kiessling LL (1997) Varying the size of multivalent ligands—the dependence of concanavalin A binding on neoglycopolymer length. J Am Chem Soc 119(41):9931–9932

    Article  CAS  Google Scholar 

  3. Kiessling LL, Gestwicki JE, Strong LE (2000) Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr Opin Chem Biol 4(6):696–703

    Article  CAS  PubMed  Google Scholar 

  4. Ghadban A, Albertin L (2013) Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization. Polymers 5(2):431–526

    Article  Google Scholar 

  5. Spain SG, Gibson MI, Cameron NR (2007) Recent advances in the synthesis of well-defined glycopolymers. J Polym Sci A Polym Chem 45(11):2059–2072

    Article  CAS  Google Scholar 

  6. Narumi A, Matsuda T, Kaga H, Satoh T, Kakuchi T (2001) Glycoconjugated polymer II. Synthesis of polystyrene-block-poly(4-vinylbenzyl glucoside) and polystyrene-block-poly(4-vinylbenzyl maltohexaoside) via 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated living radical polymerization. Polym J (Tokyo, Jpn) 33(12):939–945

    Google Scholar 

  7. Narumi A, Otsuka I, Matsuda T, Miura Y, Satoh T, Kaneko N, Kaga H, Kakuchi T (2006) Glycoconjugated polymer: synthesis and characterization of poly(vinyl saccharide)-block-polystyrene-block-poly(vinyl saccharide) as an amphiphilic ABA triblock copolymer. J Polym Sci A Polym Chem 44(13):3978–3985

    Google Scholar 

  8. Sun XL, Grande D, Baskaran S, Hanson SR, Chaikof EL (2002) Glycosaminoglycan mimetic biomaterials. 4. Synthesis of sulfated lactose-based glycopolymers that exhibit anticoagulant activity. Biomacromolecules 3(5):1065–1070

    Article  CAS  PubMed  Google Scholar 

  9. Baskaran S, Grande D, Sun XL, Yayon A, Chaikof EL (2002) Glycosaminoglycan-mimetic biomaterials. 3. Glycopolymers prepared from alkene-derivatized mono- and disaccharide-based glycomonomers. Bioconjug Chem 13(6):1309–1313

    Article  CAS  PubMed  Google Scholar 

  10. Grande D, Baskaran S, Chaikof EL (2001) Glycosaminoglycan mimetic biomaterials. 2. Alkene- and acrylate-derivatized glycopolymers via cyanoxyl-mediated free-radical polymerization. Macromolecules (Washington, DC) 34(6):1640–1646

    CAS  Google Scholar 

  11. Grande D, Baskaran S, Baskaran C, Gnanou Y, Chaikof EL (2000) Glycosaminoglycan-mimetic biomaterials. 1. Nonsulfated and sulfated glycopolymers by cyanoxyl-mediated free-radical polymerization. Macromolecules (Washington, DC) 33(4):1123–1125

    CAS  Google Scholar 

  12. Guan R, Sun XL, Hou S, Wu P, Chaikof EL (2004) A glycopolymer chaperone for fibroblast growth factor-2. Bioconjug Chem 15(1):145–151

    Article  CAS  PubMed  Google Scholar 

  13. Kitano H, Saito D, Kamada T, Gemmei-Ide M (2012) Binding of β-amyloid to sulfated sugar residues in a polymer brush. Colloids Surf B 93:219–225

    Article  CAS  Google Scholar 

  14. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (eds) (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  15. Pawar SN, Edgar KJ (2011) Chemical modifications of alginates in organic solvent systems. Biomacromolecules 12 (11):4095−4103. doi:10.1021/bm201152a

    Google Scholar 

  16. van den Bos LJ, Codée JDC, Litjens REJN, Dinkelaar J, Overkleeft HS, van der Marel G,A (2007) Uronic acids in oligosaccharide synthesis. Eur J Org Chem 24:3963–3976

    Google Scholar 

  17. Ghadban A, Reynaud E, Rinaudo M, Albertin L (2013) RAFT copolymerization of alginate-derived macromonomers—synthesis of a well-defined poly(HEMAm)-graft-(1 → 4)-α-L-guluronan copolymer capable of ionotropic gelation. Polym Chem 4(17):4578–4583. doi:10.1039/c3py00730h

    Article  CAS  Google Scholar 

  18. Ghadban A, Albertin L, Rinaudo M, Heyraud A (2012) Biohybrid glycopolymer capable of ionotropic gelation. Biomacromolecules 13(10):3108–3119

    Article  CAS  PubMed  Google Scholar 

  19. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58(6):379–410

    Article  CAS  Google Scholar 

  20. Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process—a second update. Aust J Chem 62(11):1402–1472

    Article  CAS  Google Scholar 

  21. Spain SG, Albertin L, Cameron NR (2006) Facile in situ preparation of biologically active multivalent glyconanoparticles. Chem Commun (Cambridge, UK) (40):4198–4200

    Google Scholar 

  22. Thang SH, Chong YK, Mayadunne RTA, Moad G, Rizzardo E (1999) A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Lett 40(12):2435–2438

    Article  CAS  Google Scholar 

  23. Huglin MB (1972) Specific refractive index increment. In: Huglin MB (ed) Light scattering from polymer solutions. Physical chemistry. Academic, London, pp 165–331

    Google Scholar 

  24. Rinaudo M (2007) Seaweed polysaccharides. In: Kamerling JP (ed) Comprehensive glycoscience, vol 2. Elsevier, New York, pp 691–735

    Chapter  Google Scholar 

  25. Scales CW, Vasilieva YA, Convertine AJ, Lowe AB, McCormick CL (2005) Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. Biomacromolecules 6(4):1846–1850

    Article  CAS  PubMed  Google Scholar 

  26. Chiefari J, Rizzardo E (2002) Control of free radical polymerization by chain transfer methods. In: Matyjaszewski K, Davis TP (eds) Handbook of radical polymerization. Wiley, Hoboken, NJ, pp 629–690

    Chapter  Google Scholar 

  27. Bentley TW, Llewellyn G, McAlister JA (1996) SN2 mechanism for alcoholysis, aminolysis, and hydrolysis of acetyl chloride. J Org Chem 61(22):7927–7932. doi:10.1021/jo9609844

    Article  CAS  PubMed  Google Scholar 

  28. Rijcken CJF, Veldhuis TFJ, Ramzi A, Meeldijk JD, van Nostrum CF, Hennink WE (2005) Novel fast degradable thermosensitive polymeric micelles based on PEG-block-poly(N-(2-hydroxyethyl)methacrylamide-oligolactates). Biomacromolecules 6(4):2343–2351

    Article  CAS  PubMed  Google Scholar 

  29. Duncan R (2009) Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev 61(13):1131–1148. doi:10.1016/j.addr.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  30. Vicent MJ, Ringsdorf H, Duncan R (2009) Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev 61(13):1117–1120. doi:10.1016/j.addr.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  31. Matyjaszewski K, Davis TP (eds) (2002) Handbook of radical polymerization. Wiley, Hoboken, NJ

    Google Scholar 

  32. Albertin L, Wolnik A, Ghadban A, Dubreuil F (2012) Aqueous RAFT polymerization of N-acryloylmorpholine, synthesis of an ABA triblock glycopolymer and study of its self-association behavior. Macromol Chem Phys 213(17):1768–1782

    Article  CAS  Google Scholar 

  33. Albertin L, Cameron NR (2007) RAFT polymerization of methyl 6-O-methacryloyl-α-D-glucoside in homogeneous aqueous medium. A detailed kinetic study at the low molecular weight limit of the process. Macromolecules (Washington, DC) 40(17):6082–6093

    CAS  Google Scholar 

  34. Albertin L, Stenzel MH, Barner-Kowollik C, Foster LJR, Davis TP (2005) Well-defined diblock glycopolymers from RAFT polymerization in homogeneous aqueous medium. Macromolecules (Washington, DC) 38(22):9075–9084

    CAS  Google Scholar 

  35. Albertin L, Stenzel M, Barner-Kowollik C, Foster LJR, Davis TP (2004) Well-defined glycopolymers from RAFT polymerization: poly(methyl 6-O-methacryloyl-α-D-glucoside) and its block copolymer with 2-hydroxyethyl methacrylate. Macromolecules (Washington, DC) 37(20):7530–7537

    CAS  Google Scholar 

  36. Albertin L, Kohlert C, Stenzel M, Foster LJR, Davis TP (2004) Chemoenzymatic synthesis of narrow-polydispersity glycopolymers: poly(6-O-vinyladipoyl-D-glucopyranose). Biomacromolecules 5(2):255–260

    Article  CAS  PubMed  Google Scholar 

  37. Lowe AB, McCormick CL (2007) Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32(3):283–351

    Article  CAS  Google Scholar 

  38. McCormick CL, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc Chem Res 37(5):312–325

    Article  CAS  PubMed  Google Scholar 

  39. Quinn JF, Rizzardo E, Davis TP (2001) Ambient temperature reversible addition-fragmentation chain transfer polymerisation. Chem Commun (Cambridge, UK) (11):1044–1045

    Google Scholar 

  40. Convertine AJ, Ayres N, Scales CW, Lowe AB, McCormick CL (2004) Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules 5(4):1177–1180

    Article  CAS  PubMed  Google Scholar 

  41. Chaduc I, Lansalot M, D’Agosto F, Charleux B (2012) RAFT polymerization of methacrylic acid in water. Macromolecules (Washington, DC) 45(3):1241–1247. doi:10.1021/ma2023815

    CAS  Google Scholar 

  42. Hawkins CL, Davies MJ (1996) Direct detection and identification of radicals generated during the hydroxyl radical-induced degradation of hyaluronic acid and related materials. Free Radic Biol Med 21(3):275–290

    Article  CAS  PubMed  Google Scholar 

  43. Albertin L, Stenzel MH, Barner-Kowollik C, Foster LJR, Davis TP (2005) Solvent and oxygen effects on the free radical polymerization of 6-O-vinyladipoyl-D-glucopyranose. Polymer 46(9):2831–2835

    Article  CAS  Google Scholar 

  44. Thomas DB, Convertine AJ, Hester RD, Lowe AB, McCormick CL (2004) Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations. Macromolecules (Washington, DC) 37(5):1735–1741

    CAS  Google Scholar 

  45. Albertin L, Stenzel MH, Barner-Kowollik C, Davis TP (2006) Effect of an added base on (4-cyanopentanoic acid)-4-dithiobenzoate mediated RAFT polymerization in water. Polymer 47(4):1011–1019

    Article  CAS  Google Scholar 

  46. Overberger CG, Labianca DA (1970) Azo compounds. 48. Optically active azonitriles. J Org Chem 35(6):1762–1770

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cluster de Recherche Chimie Durable et Chimie pour la Santé of the Rhône-Alpes region, the competitiveness cluster Axelera (Lyon, France), and the Agence Nationale de la Recherche (ANR-09-CP2D-02 ALGIMAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Albertin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Albertin, L. (2016). Protecting-Group-Free Synthesis of Well-Defined Glycopolymers Featuring Negatively Charged Oligosaccharides. In: Sun, XL. (eds) Macro-Glycoligands. Methods in Molecular Biology, vol 1367. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3130-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3130-9_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3129-3

  • Online ISBN: 978-1-4939-3130-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics