Assessing Direct Vascular Actions of Estrogens

Part of the Methods in Molecular Biology book series (MIMB, volume 1366)

Abstract

Estrogens are known to affect vascular function. In order to decipher the underlying mechanisms, it is essential to study the direct actions of estrogenic substances on blood vessels. There are two widely used approaches to assess the effects of estrogenic substances directly on blood vessels, the isolated perfused intact mesenteric vascular bed (McGregor preparation) and the isolated perfused/pressurized vessel approach. The McGregor preparation relies on constant flow with vascular reactivity assessed as changes in perfusion pressure. The isolated perfused/pressurized vessel approach uses a single vessel mounted on glass micropipettes. The main readout in this approach is vascular diameter. This chapter describes these approaches which remain cornerstones in the investigation of direct vascular actions of estrogenic substances.

Key words

Isolated perfusedmesentery Isolated perfused/pressurized vessel Vascular response Perfusion pressure Vascular diameter 

References

  1. 1.
    Kim KH, Young BD, Bender JR (2014) Endothelial estrogen receptor isoforms and cardiovascular disease. Mol Cell Endocrinol 389:65–70CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mendelsohn ME (2002) Genomic and nongenomic effects of estrogen in the vasculature. Am J Cardiol 90:3F–6FCrossRefPubMedGoogle Scholar
  3. 3.
    Register TC, Adams MR (1998) Coronary artery and cultured aortic smooth muscle cells express mRNA for both the classical estrogen receptor and the newly described estrogen receptor beta. J Steroid Biochem Mol Biol 64:187–191CrossRefPubMedGoogle Scholar
  4. 4.
    Meyer MR, Haas E, Prossnitz ER, Barton M (2009) Non-genomic regulation of vascular cell function and growth by estrogen. Mol Cell Endocrinol 308:9–16CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60:210–241CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Martin D, Song J, Mark C, Eyster K (2008) Understanding the cardiovascular actions of soy isoflavones: potential novel targets for antihypertensive drug development. Cardiovasc Hematol Disord Drug Targets 8:297–312CrossRefPubMedGoogle Scholar
  7. 7.
    Mendelsohn ME (2009) Estrogen actions in the cardiovascular system. Climacteric 12(Suppl 1):18–21CrossRefPubMedGoogle Scholar
  8. 8.
    Li M, Stallone JN (2005) Estrogen potentiates vasopressin-induced contraction of female rat aorta by enhancing cyclooxygenase-2 and thromboxane function. Am J Physiol Heart Circ Physiol 289:H1542–H1550CrossRefPubMedGoogle Scholar
  9. 9.
    McGregor DD (1965) The effect of sympathetic nerve stimulation of vasoconstrictor responses in perfused mesenteric blood vessels of the rat. J Physiol 177:21–30CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mark CJ, Tatchum-Talom R, Martin DS, Eyster KM (2007) Effects of estrogens and selective estrogen receptor modulators on vascular reactivity in the perfused mesenteric vascular bed. Am J Physiol Regul Integr Comp Physiol 293:R1969–R1975CrossRefPubMedGoogle Scholar
  11. 11.
    Tatchum-Talom R, Eyster KM, Kost CK Jr, Martin DS (2011) Blood pressure and mesenteric vascular reactivity in spontaneously hypertensive rats 7 months after gonadectomy. J Cardiovasc Pharmacol 57:357–364CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tatchum-Talom R, Eyster KM, Martin DS (2005) Sexual dimorphism in angiotensin II-induced hypertension and vascular alterations. Can J Physiol Pharmacol 83:413–422CrossRefPubMedGoogle Scholar
  13. 13.
    Tatchum-Talom R, Martel C, Marette A (2002) Effects of ethinyl estradiol, estradiol, and testosterone on hindlimb endothelial function in vivo. J Cardiovasc Pharmacol 39:496–502CrossRefPubMedGoogle Scholar
  14. 14.
    Meyer MC, Cummings K, Osol G (1997) Estrogen replacement attenuates resistance artery adrenergic sensitivity via endothelial vasodilators. Am J Physiol 272:H2264–H2270PubMedGoogle Scholar
  15. 15.
    Chan YC, Leung FP, Tian XY, Yung LM, Lau CW, Chen ZY, Yao X, Laher I, Huang Y (2012) Raloxifene improves vascular reactivity in pressurized septal coronary arteries of ovariectomized hamsters fed cholesterol diet. Pharmacol Res 65:182–188CrossRefPubMedGoogle Scholar
  16. 16.
    Cockell AP, Poston L (1997) 17Beta-estradiol stimulates flow-induced vasodilatation in isolated small mesenteric arteries from prepubertal female rats. Am J Obstet Gynecol 177:1432–1438CrossRefPubMedGoogle Scholar
  17. 17.
    Lekontseva O, Jiang Y, Davidge ST (2009) Estrogen replacement increases matrix metalloproteinase contribution to vasoconstriction in a rat model of menopause. J Hypertens 27:1602–1608CrossRefPubMedGoogle Scholar
  18. 18.
    Malik KU (1969) Effect of temperature changes on the tone of perfused mesenteric arteries of rat and on the perfusion pressure responses to sympathetic nerve stimulation and injected noradrenaline. J Pharm Pharmacol 21:472–473CrossRefPubMedGoogle Scholar
  19. 19.
    Geary GG, Krause DN, Duckles SP (1998) Estrogen reduces myogenic tone through a nitric oxide-dependent mechanism in rat cerebral arteries. Am J Physiol 275:H292–H300PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionUSA

Personalised recommendations