The Use of Real-Time Reverse Transcription-PCR for Assessing Estrogen Receptor and Estrogen-Responsive Gene Expression

  • Michelle L. Booze
  • Kathleen M. Eyster
Part of the Methods in Molecular Biology book series (MIMB, volume 1366)


Real-time reverse transcription-polymerase chain reaction (RT-PCR), also known as quantitative RT-PCR (qRT-PCR), is a powerful tool for assessing gene transcription levels. The technique is especially useful for measuring estrogen receptor transcript levels as well as gene expression changes in response to estrogen stimulation as it is quick, accurate, robust, and allows the measurement of gene expression in a variety of tissues and cells. This chapter describes the protocols used for the real-time RT-PCR assay using hydrolysis (TaqMan-type) probes.

Key words

Estrogenreceptors Gene expression Primer Fluorogenic probe Real-time RT-PCR Master mix Custom design Normalization 



This work was supported, in part, by NIH P20GM103443. The authors would like to thank Dr. Rozzy Finn for reviewing this chapter.


  1. 1.
    Gibson UE, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6(10):995–1001CrossRefGoogle Scholar
  2. 2.
    Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22(1):130–131, 134–138CrossRefGoogle Scholar
  3. 3.
    Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24(6):954–958, 960, 962PubMedGoogle Scholar
  4. 4.
    Lee LG, Connell CR, Bloch W (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21(16):3761–3766CrossRefGoogle Scholar
  5. 5.
    Tyagi S (1996) Taking DNA probes into a protein world. Nat Biotechnol 14(8):947–948CrossRefGoogle Scholar
  6. 6.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308CrossRefGoogle Scholar
  7. 7.
    Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17(8):804–807CrossRefGoogle Scholar
  8. 8.
    Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5(2):209–219CrossRefGoogle Scholar
  9. 9.
    Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994CrossRefGoogle Scholar
  10. 10.
    Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88(16):7276–7280CrossRefGoogle Scholar
  11. 11.
    Gut M, Leutenegger CM, Huder JB, Pedersen NC, Lutz H (1999) One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses. J Virol Methods 77(1):37–46CrossRefGoogle Scholar
  12. 12.
    Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50(4):227–230CrossRefGoogle Scholar
  13. 13.
    Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 15(3):155–166PubMedPubMedCentralGoogle Scholar
  14. 14.
    Boda E, Pini A, Hoxha E, Parolisi R, Tempia F (2009) Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J Mol Neurosci 37(3):238–253CrossRefGoogle Scholar
  15. 15.
    Schroder AL, Pelch KE, Nagel SC (2009) Estrogen modulates expression of putative housekeeping genes in the mouse uterus. Endocrine 35(2):211–219CrossRefGoogle Scholar
  16. 16.
    Zou K, Ing NH (1998) Oestradiol up-regulates oestrogen receptor, cyclophilin, and glyceraldehyde phosphate dehydrogenase mRNA concentrations in endometrium, but down-regulates them in liver. J Steroid Biochem Mol Biol 64(5–6):231–237CrossRefGoogle Scholar
  17. 17.
    Jurado J, Prieto-Alamo MJ, Madrid-Risquez J, Pueyo C (2003) Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J Biol Chem 278(46):45546–45554CrossRefGoogle Scholar
  18. 18.
    Castelain S, Descamps V, Thibault V et al (2004) TaqMan amplification system with an internal positive control for HCV RNA quantitation. J Clin Virol 31(3):227–234CrossRefGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefGoogle Scholar
  20. 20.
    Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) A-Z of quantitative PCR. International University Line, La Jolla, CA, pp 87–112Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sanford ResearchSioux FallsUSA
  2. 2.Division of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionUSA

Personalised recommendations