Skip to main content

Fluorescence Imaging of the Cytoskeleton in Plant Roots

  • Protocol
Book cover Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1365))

Abstract

During the past two decades the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis roots, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. For roots with a larger diameter such as Medicago truncatula, seeds are first germinated in moist paper, grown vertically in between plastic trays, and roots mounted on glass slides for confocal imaging. Parallel with our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use non-embedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li J, Blanchoin L, Staiger CJ (2015) Signaling to actin stochastic dynamics. Annu Rev Plant Biol 66:415–440. doi: 10.1146/annurev-arplant-050213-040327

    Google Scholar 

  2. Eng RC, Wasteneys GO (2014) The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. Plant Cell 26:3372–3386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Rocchetti A, Hawes C, Kriechbaumer V (2014) Fluorescent labelling of the actin cytoskeleton in plants using a cameloid antibody. Plant Methods 10:12

    Article  PubMed Central  PubMed  Google Scholar 

  4. Marc J, Granger CL, Brincat J, Fisher DD, Kao T-H, McCubbin AG, Cyr RJ (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1940

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Vidali L, Rounds CM, Hepler PK, Bezanilla M (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4:e5744

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dyachok J, Sparks JA, Liao F, Wang Y-S, Blancaflor EB (2014) Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: fluorophore variant, actin binding domain and promoter considerations. Cytoskeleton 71:311–327

    Article  CAS  PubMed  Google Scholar 

  7. Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  CAS  PubMed  Google Scholar 

  8. Collings DA, Wasteneys GO (2005) Actin microfilament and microtubule distribution patterns in the expanding root of Arabidopsis thaliana. Can J Bot 83:579–590

    Article  Google Scholar 

  9. Wilsen KL, Lovy-Wheeler A, Voigt B, Menzel D, Kunkel JG, Hepler PK (2006) Imaging the actin cytoskeleton in growing pollen tubes. Sex Plant Reprod 19:51–62

    Article  Google Scholar 

  10. Yoo CM, Quan L, Cannon AE, Wen J, Blancaflor EB (2012) AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity. Plant J 69:1064–1076

    Article  CAS  PubMed  Google Scholar 

  11. Yoo CM, Blancaflor EB (2013) Overlapping and divergent signaling pathways for ARK1 and AGD1 in the control of root hair polarity in Arabidopsis thaliana. Front Plant Sci 4:528

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L (2008) Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol Plant 1:990–1006

    Article  CAS  PubMed  Google Scholar 

  13. Brown RC, Lemmon BE (1995) Methods in plant immunolight microscopy. In: Galbraith DW, Bohnert HJ, Bourque DP (eds) Methods in cell biology. Academic Press, San Diego, CA, pp 85–107

    Google Scholar 

  14. Blancaflor EB, Hasenstein KH (2000) Methods for detection and identification of F-actin organization in plant tissues. In: Staiger C, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 601–618

    Chapter  Google Scholar 

  15. Blancaflor EB, Wang Y-S, Motes CM (2006) Organization and function of the actin cytoskeleton in developing root cells. Int Rev Cyto 252:153–198

    Google Scholar 

  16. Blancaflor EB, Zhao L, Harrison MJ (2001) Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217:154–165

    Article  CAS  PubMed  Google Scholar 

  17. Blancaflor EB, Hasenstein KH (1997) The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize. Plant Physiol 113:1447–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Hou G, Mohamalawari DR, Blancaflor EB (2003) Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol 131:1360–1373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Garcia J, Barker DG, Journet E-P (2006) Seed storage and germination. In: Mathesius U, Journet EP, Sumner LW (eds) The Medicago truncatula handbook. ISBN 0-9754303-1-9. http://www.noble.org/MedicagoHandbook/

  20. Ivanov S, Harrison MJ (2014) A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Plant J 80:1151–1163

    Article  CAS  PubMed  Google Scholar 

  21. Warner CA, Biedrzycki ML, Jacobs SS, Wisser RJ, Caplan JL, Sherrier DJ (2014) An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol 166:1684–1687

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Work on root biology and the cytoskeleton in the Blancaflor laboratory is supported by the Samuel Roberts Noble Foundation Forage 365 initiative and National Aeronautics and Space Administration (NASA grant NNX12 AM94G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elison B. Blancaflor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dyachok, J., Paez-Garcia, A., Yoo, CM., Palanichelvam, K., Blancaflor, E.B. (2016). Fluorescence Imaging of the Cytoskeleton in Plant Roots. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 1365. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3124-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3124-8_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3123-1

  • Online ISBN: 978-1-4939-3124-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics