Skip to main content

Homology Modeling Procedures for Cytoskeletal Proteins of Tetrahymena and Other Ciliated Protists

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1365))

Abstract

In recent years there has been an explosive increase in the number of annotated protein sequences available through genome sequencing, as well as an accumulation of published protein structural data based on crystallographic and NMR methods. When taken together with the development of computational methods for the prediction of protein structural and functional properties through homology modeling, an opportunity exists for prediction of properties of cytoskeletal proteins in a suitable model organism, such as Tetrahymena thermophila and its ciliated protist relatives. In particular, the recently sequenced genome of T. thermophila, long a model for cytoskeletal studies, provides a good starting point for undertaking such homology modeling studies. Homology modeling can produce functional predictions, for example regarding potential molecular interactions, that are of great interest to the drug industry and Tetrahymena is an attractive model system in which to follow up computational predictions with experimental analyses. We provide here procedures that can be followed to gain entry into this promising avenue of analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wlodawer A, Minor W, Dauter Z, Jaskolski M (2013) Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J 280(22):5705–5736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Milne JL, Borgnia MJ, Alberto Bartesaghi A, Erin EH, Tran EE, Earl LA, Schauder DM, Lengyel J, Jason Pierson J, Subramaniam S, Patwardhan A (2013) Cryo electron microscopy—a primer for the non-microscopist. FEBS J 280(1):28–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Markley JL, Bahrami A, Eghbalnia HR, Peterson FC, Tyler RC, UIlrich EL, Westler WM, Volkman BF (2009) Macromolecular structure determination by NMR spectroscopy. In: Gu J, Bourne PE (eds) Structural bioinformatics, 2nd edn. Wiley, Hoboken, NJ, pp 93–128

    Google Scholar 

  4. Yalcin EB, Stangl H, Pichu S, Mather TN, King RS (2011) Monoamine neurotransmitters as substrates for novel tick sulfotransferases, homology modeling, molecular docking, and enzyme kinetics. ACS Chem Biol 6(2):176–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Venselaar H, Krieger E, Vriend G (2009) Homology modeling. In: Gu J, Bourne PE (eds) Structural bioinformatics, 2nd edn. Wiley, Hoboken, NJ, pp 715–735

    Google Scholar 

  6. Mills CL, Beuning PJ, Ondrechen MJ (2015) Biochemical functional predictions for protein structures of unknown or uncertain function. Comput Struct Biotechnol J 13:182–191

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 19(7):890–897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gaertig J (2000) Molecular mechanisms of microtubular organelle assembly in Tetrahymena. J Eukaryot Microbiol 47(3):185–190

    Article  CAS  PubMed  Google Scholar 

  9. Beisson J (2007) Preformed cell structure and cell heredity. In: Chernoff Y (ed) Protein-based inheritance. Landes Biosciences, Austin, TX, pp 106–118

    Google Scholar 

  10. Beisson J, Bétermier M, Bré MH, Cohen J, Duharcourt S, Duret L, Kung C, Malinsky S, Meyer E, Preer JR Jr, Sperling L (2010) Paramecium tetraurelia: the renaissance of an early unicellular model. Cold Spring Harb Protoc 2010:pdb.emo140. doi:10.1101/pdb.emo140

    PubMed  Google Scholar 

  11. Orias E (1997) Introduction to the genetics of Tetrahymena. Tetrahymena Genome Project. Available from https://www.lifesci.ucsb.edu/genome/Tetrahymena/

  12. Beisson J, Bétermier M, Bré MH, Cohen J, Duharcourt S, Duret L, Kung C, Malinsky S, Meyer E, Preer JR Jr, Sperling L (2010) Mass culture of Paramecium tetraurelia. Cold Spring Harb Protoc 2010:pdb.prot5362. doi:10.1101/pdb.prot5362

    PubMed  Google Scholar 

  13. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK Jr, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4(9):e286

    Article  PubMed Central  PubMed  Google Scholar 

  14. Coyne RS, Thiagarajan M, Jones KM, Wortman JR, Tallon LJ, Haas BJ, Cassidy-Hanley DM, Wiley EA, Smith JJ, Collins K, Lee SR, Couvillion MT, Liu Y, Garg J, Pearlman RE, Hamilton EP, Orias E, Eisen JA, Methé BA (2008) Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization and targeted gap closure. BMC Genomics 9:562–579. doi:10.1186/1471-2164-9-562

    Article  PubMed Central  PubMed  Google Scholar 

  15. Stover NA, Krieger CJ, Binkley G, Dong Q, Fisk DG, Nash R, Sethuraman A, Weng S, Cherry JM (2006) Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res 34(Database issue):D500–D503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Xiong J, Lu X, Lu Y, Zeng H, Yuan D, Feng L, Chang Y, Bowen J, Gorovsky MA, Fu C, Miao W (2011) Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Sci China Life Sci 54(1):65–67

    Article  CAS  PubMed  Google Scholar 

  17. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–736

    Article  CAS  PubMed  Google Scholar 

  18. Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N (2011) Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–948

    Article  CAS  PubMed  Google Scholar 

  19. Zeng Z, Min B, Huang J, Hong K, Yang Y, Collins K, Lei M (2011) Structural basis for Tetrahymena telomerase processivity factor Teb1 binding to single-stranded telomeric-repeat DNA. Proc Natl Acad Sci U S A 108(51):20357–20361. doi:10.1073/pnas.1113624108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pagano GJ, King RS, Martin LM, Hufnagel LA (2015) The unique N-terminal insert in the ribosomal protein, phosphoprotein P0, of Tetrahymena thermophila: bioinformatic evidence for an interaction with 26S rRNA. Proteins 83(6):1078-1090. doi:10.1002/prot.24800

    Google Scholar 

  21. Reid AJ, Yeats C, Lees J, Orengo CA (2009) Structural annotation of genomes. In: Gu J, Bourne P (eds) Structural bioinformatics, 2nd edn. Wiley, Hoboken, NJ, pp 539–558

    Google Scholar 

  22. Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV, Notredame C (2007) The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35(Web Server issue):W645–W648

    Article  PubMed Central  PubMed  Google Scholar 

  23. Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C (2006) Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res 34(Web Server issue):W604–W608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  25. Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A (2006) Comparative protein structure modeling with MODELLER. Curr Protoc Bioinformatics 15:5.6.1–5.6.30

    Article  Google Scholar 

  26. Spassov VZ, Yan L, Flook PK (2007) The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions. Protein Sci 16:494–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275(1):1–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Spassov VZ, Flook PK, Yan L (2008) LOOPER: a molecular mechanics-based algorithm for protein loop prediction. Protein Eng Des Sel 21:91–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Computational resources provided in part by the RI-INBRE Centralized Research Core Facility which is supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number 2 P20 GM103430.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda A. Hufnagel or Roberta S. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pagano, G.J., Hufnagel, L.A., King, R.S. (2016). Homology Modeling Procedures for Cytoskeletal Proteins of Tetrahymena and Other Ciliated Protists. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 1365. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3124-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3124-8_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3123-1

  • Online ISBN: 978-1-4939-3124-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics