Skip to main content

Quantitative Motion Analysis in Two and Three Dimensions

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1365))

Abstract

This chapter describes 2D quantitative methods for motion analysis as well as 3D motion analysis and reconstruction methods. Emphasis is placed on the analysis of dynamic cell shape changes that occur through extension and retraction of force generating structures such as pseudopodia and lamellipodia. Quantitative analysis of these structures is an underutilized tool in the field of cell migration. Our intent, therefore, is to present methods that we developed in an effort to elucidate mechanisms of basic cell motility, directed cell motion during chemotaxis, and metastasis. We hope to demonstrate how application of these methods can more clearly define alterations in motility that arise due to specific mutations or disease and hence, suggest mechanisms or pathways involved in normal cell crawling and treatment strategies in the case of disease. In addition, we present a 4D tumorigenesis model for high-resolution analysis of cancer cells from cell lines and human cancer tissue in a 3D matrix. Use of this model led to the discovery of the coalescence of cancer cell aggregates and unique cell behaviors not seen in normal cells or normal tissue. Graphic illustrations to visually display and quantify cell shape are presented along with algorithms and formulae for calculating select 2D and 3D motion analysis parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wang MJ, Artemenko Y, Cai WJ, Iglesias PA, Devreotes PN (2014) The directional response of chemotactic cells depends on a balance between cytoskeletal architecture and the external gradient. Cell Rep 9:1110–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Danuser G, Allard J, Mogilner A (2013) Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 29:501–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Doyle AD, Petrie RJ, Kutys ML, Yamada KM (2013) Dimensions in cell migration. Curr Opin Cell Biol 25:642–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  5. Biname F, Pawlak G, Roux P, Hibner U (2010) What makes cells move: requirements and obstacles for spontaneous cell motility. Mol Biosyst 6:648–661

    Article  CAS  PubMed  Google Scholar 

  6. Annesley SJ, Fisher PR (2009) Dictyostelium discoideum--a model for many reasons. Mol Cell Biochem 329:73–91

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez-Gonzalez B, Meili R, Firtel R, Bastounis E, Del Alamo JC, Lasheras JC (2014) Cytoskeletal mechanics regulating amoeboid cell locomotion. Appl Mech Rev 66:pii: 050804

    Google Scholar 

  8. Davidson AJ, Insall RH (2013) SCAR/WAVE: a complex issue. Commun Integr Biol 6:e27033

    Article  PubMed Central  PubMed  Google Scholar 

  9. Soll DR, Wessels D, Kuhl S, Lusche DF (2009) How a cell crawls and the role of cortical myosin II. Eukaryot Cell 8:1381–1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wessels D, Lusche DF, Scherer A, Kuhl S, Myre MA, Soll DR (2014) Huntingtin regulates Ca(2+) chemotaxis and K(+)-facilitated cAMP chemotaxis, in conjunction with the monovalent cation/H(+) exchanger Nhe1, in a model developmental system: insights into its possible role in Huntingtons disease. Dev Biol 394:24–38

    Article  CAS  PubMed  Google Scholar 

  11. Futosi K, Fodor S, Mocsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kumar S, Xu J, Kumar RS, Lakshmikanthan S, Kapur R, Kofron M, Chrzanowska-Wodnicka M, Filippi MD (2014) The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation. J Exp Med 211:1741–1758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Itakura A, Aslan JE, Kusanto BT, Phillips KG, Porter JE, Newton PK, Nan X, Insall RH, Chernoff J, McCarty OJ (2013) p21-Activated kinase (PAK) regulates cytoskeletal reorganization and directional migration in human neutrophils. PLoS One 8:e73063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Niggli V (2003) Signaling to migration in neutrophils: importance of localized pathways. Int J Biochem Cell Biol 35:1619–1638

    Article  CAS  PubMed  Google Scholar 

  15. Rougerie P, Miskolci V, Cox D (2013) Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 256:222–239

    Article  CAS  PubMed  Google Scholar 

  16. Pixley FJ (2012) Macrophage migration and its regulation by CSF-1. Int J Cell Biol 2012:501962

    Article  PubMed Central  PubMed  Google Scholar 

  17. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796:293–308

    CAS  PubMed  Google Scholar 

  18. Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13:535–541

    Article  CAS  PubMed  Google Scholar 

  19. Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S (2015) Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 93:1

    Article  CAS  PubMed  Google Scholar 

  20. Castillo-Pichardo L, Humphries-Bickley T, De La Parra C, Forestier-Roman I, Martinez-Ferrer M, Hernandez E, Vlaar C, Ferrer-Acosta Y, Washington AV, Cubano LA et al (2014) The rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse model. Transl Oncol 7:546–555

    Article  PubMed Central  PubMed  Google Scholar 

  21. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  CAS  PubMed  Google Scholar 

  22. Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96

    Article  PubMed  Google Scholar 

  23. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ishihara D, Dovas A, Park H, Isaac BM, Cox D (2012) The chemotactic defect in wiskott-Aldrich syndrome macrophages is due to the reduced persistence of directional protrusions. PLoS One 7:e30033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Soll DR, Wessels D, Heid PJ, Zhang H (2002) A contextual framework for characterizing motility and chemotaxis mutants in Dictyostelium discoideum. J Muscle Res Cell Motil 23:659–672

    Article  CAS  PubMed  Google Scholar 

  26. Hind LE, Mackay JL, Cox D, Hammer DA (2014) Two-dimensional motility of a macrophage cell line on microcontact-printed fibronectin. Cytoskeleton 71:542–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Charras G, Sahai E (2014) Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15:813–824

    Article  CAS  PubMed  Google Scholar 

  28. Chang Stephanie S, Guo W-h, Kim Y, Wang Y-l (2013) Guidance of cell migration by substrate dimension. Biophys J 104:313–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Corall S, Haraszti T, Bartoschik T, Spatz J, Ludwig T, Cavalcanti-Adam E (2014) \upalpha 5\upbeta 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments. Comput Mech 53:499–510

    Article  Google Scholar 

  30. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Stepanovic V, Wessels D, Goldman FD, Geiger J, Soll DR (2004) The chemotaxis defect of Shwachman-Diamond Syndrome leukocytes. Cell Motil Cytoskeleton 57:158–174

    Article  CAS  PubMed  Google Scholar 

  32. Williams RS, Boeckeler K, Graf R, Muller-Taubenberger A, Li Z, Isberg RR, Wessels D, Soll DR, Alexander H, Alexander S (2006) Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends Mol Med 12:415–424

    Article  CAS  PubMed  Google Scholar 

  33. Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V (2010) Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 184:1049–1061

    Article  PubMed  Google Scholar 

  34. Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, Liu H, Hodgson L, Condeelis J (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33:4203–4212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu Z-G (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23:898–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sidani M, Wessels D, Mouneimne G, Ghosh M, Goswami S, Sarmiento C, Wang W, Kuhl S, El-Sibai M, Backer JM (2007) Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. J Cell Biol 179:777–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Starke J, Maaser K, Wehrle-Haller B, Friedl P (2013) Mechanotransduction of mesenchymal melanoma cell invasion into 3D collagen lattices: filopod-mediated extension–relaxation cycles and force anisotropy. Exp Cell Res 319:2424–2433

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, McNiven MA (2012) Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. J Cell Biol 196:375–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gligorijevic B, Bergman A, Condeelis J (2014) Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol 12:e1001995

    Article  PubMed Central  PubMed  Google Scholar 

  40. Murphy DA, Courtneidge SA (2011) The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12:413–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Linder S, Wiesner C (2015) Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 72:121

    Article  CAS  PubMed  Google Scholar 

  42. Heid PJ, Geiger J, Wessels D, Voss E, Soll DR (2005) Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium. J Cell Sci 118:2225–2237

    Article  CAS  PubMed  Google Scholar 

  43. Lusche DF, Wessels D, Richardson NA, Russell KB, Hanson BM, Soll BA, Lin BH, Soll DR (2014) PTEN redundancy: overexpressing lpten, a homolog of Dictyostelium discoideum ptenA, the ortholog of human PTEN, rescues all behavioral defects of the mutant ptenA-. PLoS One 9:e108495

    Article  PubMed Central  PubMed  Google Scholar 

  44. Volk AP, Heise CK, Hougen JL, Artman CM, Volk KA, Wessels D, Soll DR, Nauseef WM, Lamb FS, Moreland JG (2008) ClC-3 and IClswell are required for normal neutrophil chemotaxis and shape change. J Biol Chem 283:34315–34326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Scherer A, Kuhl S, Wessels D, Lusche DF, Hanson B, Ambrose J, Voss E, Fletcher E, Goldman C. and Soll DR (2015) A Computer-Assisted 3D Model for Analyzing the Aggregation of Tumorigenic Cells Reveals Specialized Behaviors and Unique Cell Types that Facilitate Aggregate Coalescence. PLoS ONE. 10.1371/journal.pone.0118628

    Google Scholar 

  46. Soll DR, Wessels D, Heid PJ, Voss E (2003) Computer-assisted reconstruction and motion analysis of the three-dimensional cell. ScientificWorldJournal 3:827–841

    Article  PubMed  Google Scholar 

  47. Varnum B, Edwards KB, Soll DR (1985) Dictyostelium amebae alter motility differently in response to increasing versus decreasing temporal gradients of cAMP. J Cell Biol 101:1–5

    Article  CAS  PubMed  Google Scholar 

  48. Wessels D, Brincks R, Kuhl S, Stepanovic V, Daniels KJ, Weeks G, Lim CJ, Spiegelman G, Fuller D, Iranfar N et al (2004) RasC plays a role in transduction of temporal gradient information in the cyclic-AMP wave of Dictyostelium discoideum. Eukaryot Cell 3:646–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Geiger J, Wessels D, Soll DR (2003) Human polymorphonuclear leukocytes respond to waves of chemoattractant, like Dictyostelium. Cell Motil Cytoskeleton 56:27–44

    Article  PubMed  Google Scholar 

  50. Heid PJ, Wessels D, Daniels KJ, Gibson DP, Zhang H, Voss E, Soll DR (2004) The role of myosin heavy chain phosphorylation in Dictyostelium motility, chemotaxis and F-actin localization. J Cell Sci 117:4819–4835

    Article  CAS  PubMed  Google Scholar 

  51. Shutt DC, Jenkins LM, Carolan EJ, Stapleton J, Daniels KJ, Kennedy RC, Soll DR (1998) T cell syncytia induced by HIV release. T cell chemoattractants: demonstration with a newly developed single cell chemotaxis chamber. J Cell Sci 111(Pt 1):99–109

    CAS  PubMed  Google Scholar 

  52. Lusche DF, Wessels D, Scherer A, Daniels K, Kuhl S, Soll DR (2012) The IplA Ca2+ channel of Dictyostelium discoideum is necessary for chemotaxis mediated through Ca2+, but not through cAMP, and has a fundamental role in natural aggregation. J Cell Sci 125:1770–1783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Scherer A, Kuhl S, Wessels D, Lusche DF, Raisley B, Soll DR (2010) Ca2+ chemotaxis in Dictyostelium discoideum. J Cell Sci 123:3756–3767

    Article  CAS  PubMed  Google Scholar 

  54. Skoge M, Adler M, Groisman A, Levine H, Loomis WF, Rappel WJ (2010) Gradient sensing in defined chemotactic fields. Integr Biol (Camb) 2:659–668

    Article  CAS  Google Scholar 

  55. Varnum B, Edwards KB, Soll DR (1986) The developmental regulation of single-cell motility in Dictyostelium discoideum. Dev Biol 113:218–227

    Article  CAS  PubMed  Google Scholar 

  56. Varnum B, Soll DR (1981) Chemoresponsiveness to cAMP and folic acid during growth, development, and dedifferentiation in Dictyostelium discoideum. Differentiation 18:151–160

    Article  CAS  PubMed  Google Scholar 

  57. Hoeller O, Kay RR (2007) Chemotaxis in the absence of PIP3 gradients. Curr Biol 17:813–817

    Article  CAS  PubMed  Google Scholar 

  58. Barsky B (1988) Computer graphics and geometric modeling using beta-splines. Springer, New York, NY

    Google Scholar 

  59. Soll D, Voss E (1998) Two and three dimensional computer systems for analyzing how cells crawl. In: Soll D, Wessels D (eds) Motion analysis of living cells. John Wiley, Inc., New York, NY, pp 25–52

    Google Scholar 

  60. Soll DR (1995) The use of computers in understanding how animal cells crawl. Int Rev Cytol 163:43–104

    Article  CAS  PubMed  Google Scholar 

  61. Soll DR, Wessels D, Voss E, Johnson O (2001) Computer-assisted systems for the analysis of amoeboid cell motility. Methods Mol Biol 161:45–58

    CAS  PubMed  Google Scholar 

  62. Maron MJ (1982) Numerical analysis. Macmillan, New York, NY

    Google Scholar 

  63. Soll DR, Voss E, Johnson O, Wessels D (2000) Three-dimensional reconstruction and motion analysis of living, crawling cells. Scanning 22:249–257

    Article  CAS  PubMed  Google Scholar 

  64. Soll DR, Voss E, Varnum-Finney B, Wessels D (1988) “Dynamic Morphology System”: a method for quantitating changes in shape, pseudopod formation, and motion in normal and mutant amoebae of Dictyostelium discoideum. J Cell Biochem 37:177–192

    Article  CAS  PubMed  Google Scholar 

  65. Chung CY, Lee S, Briscoe C, Ellsworth C, Firtel RA (2000) Role of Rac in controlling the actin cytoskeleton and chemotaxis in motile cells. Proc Natl Acad Sci 97:5225–5230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Wessels D, Lusche DF, Steimle PA, Scherer A, Kuhl S, Wood K, Hanson B, Egelhoff TT, Soll DR (2012) Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum. J Cell Sci 125:4934–4944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wessels D, Murray J, Jung G, Hammer JA 3rd, Soll DR (1991) Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility. Cell Motil Cytoskeleton 20:301–315

    Article  CAS  PubMed  Google Scholar 

  68. Soll D, Wessels D (1998) Computer-assisted characterization of the behavioral defects of cytoskeletal mutants of Dictyostelium discoideum. In: Soll D, Wessels D (eds) Motion analysis of living cells. John Wiley, Inc., New York, NY, pp 101–140

    Google Scholar 

  69. Wessels D, Soll DR, Knecht D, Loomis WF, De Lozanne A, Spudich J (1988) Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Dev Biol 128:164–177

    Article  CAS  PubMed  Google Scholar 

  70. Poston T, Wong TT, Heng PA (1998) Multiresolution isosurface extraction with adaptive skeleton climbing. Comput Graph Forum 17:137

    Article  Google Scholar 

  71. Wessels D, Reynolds J, Johnson O, Voss E, Burns R, Daniels K, Garrard E, O’Halloran TJ, Soll DR (2000) Clathrin plays a novel role in the regulation of cell polarity, pseudopod formation, uropod stability and motility in Dictyostelium. J Cell Sci 113(Pt 1):21–36

    CAS  PubMed  Google Scholar 

  72. Wessels D, Vawter-Hugart H, Murray J, Soll DR (1994) Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. Cell Motil Cytoskeleton 27:1–12

    Article  CAS  PubMed  Google Scholar 

  73. Wessels D, Voss E, Von Bergen N, Burns R, Stites J, Soll DR (1998) A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells. Cell Motil Cytoskeleton 41:225–246

    Article  CAS  PubMed  Google Scholar 

  74. Soll DR (1999) Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells. Comput Med Imaging Graph 23:3–14

    Article  CAS  PubMed  Google Scholar 

  75. Hermann L (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div 102:749–756

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Developmental Studies Hybridoma Bank (DSHB), a National Resource created by the NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242. We thank Brett Hanson, Joseph Ambrose, Kanoe Russell, Emma Buchele, Brian Kroll, Michele Livitz, Benjamin Soll, and Nicole Richardson for technical assistance. The monoclonal antibodies AIIB2, developed by C.H. Damsky, and P1B5, developed by E.A. Wayner and W.G. Carter, were obtained from the DSHB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Soll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wessels, D.J., Lusche, D.F., Kuhl, S., Scherer, A., Voss, E., Soll, D.R. (2016). Quantitative Motion Analysis in Two and Three Dimensions. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 1365. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3124-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3124-8_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3123-1

  • Online ISBN: 978-1-4939-3124-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics