Skip to main content

An In Vitro Model System to Test Mechano-microbiological Interactions Between Bacteria and Host Cells

  • Protocol
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1365))

Abstract

The aim of this chapter is to present an innovative technique to visualize changes of the f-actin cytoskeleton in response to locally applied force. We developed an in vitro system that combines micromanipulation of force by magnetic tweezers with simultaneous live cell fluorescence microscopy. We applied pulling forces to magnetic beads coated with the Neisseria gonorrhoeae Type IV pili in the same order of magnitude than the forces generated by live bacteria. We saw quick and robust f-actin accumulation at the sites where pulling forces were applied. Using the magnetic tweezers we were able to mimic the local response of the f-actin cytoskeleton to bacteria-generated forces. In this chapter we describe our magnetic tweezers system and show how to control it in order to study cellular responses to force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128:1065–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci U S A 99:5394–5399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Pollard TD (2010) Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 22:50–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chicurel ME, Chen CS, Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10:232–239

    Article  CAS  PubMed  Google Scholar 

  5. Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29:27–61

    Article  CAS  PubMed  Google Scholar 

  6. Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP (2013) Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A 110:E1361–E1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357

    Article  CAS  PubMed  Google Scholar 

  8. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  CAS  PubMed  Google Scholar 

  9. Vogel V, Sheetz MP (2009) Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol 21:38–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13:1365–1377

    Article  CAS  PubMed  Google Scholar 

  11. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  12. Nisticò P, Di Modugno F, Spada S, Bissell MJ (2014) β1 and β4 integrins : from breast development to clinical practice. 1–9, Breast Cancer Research 2014, 16:459

    Google Scholar 

  13. Lee SW, Higashi DL, Snyder A, Merz AJ, Potter L, So M (2005) PilT is required for PI(3,4,5)P3-mediated crosstalk between Neisseria gonorrhoeae and epithelial cells. Cell Microbiol 7:1271–1284

    Article  CAS  PubMed  Google Scholar 

  14. Bieber D, Ramer SW, Wu CY, Murray WJ, Tobe T, Fernandez R, Schoolnik GK (1998) Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280(5372):2114–2118

    Article  CAS  PubMed  Google Scholar 

  15. Lambrechts A, Gevaert K, Cossart P, Vandekerckhove J, Van Troys M (2008) Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol 18(April):220–227

    Article  CAS  PubMed  Google Scholar 

  16. Cleary J, Lai L-C, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S (2004) Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 150(Pt 3):527–538

    Article  CAS  PubMed  Google Scholar 

  17. Caron E, Crepin VF, Simpson N, Knutton S, Garmendia J, Frankel G (2006) Subversion of actin dynamics by EPEC and EHEC. Curr Opin Microbiol 9:40–45

    Article  CAS  PubMed  Google Scholar 

  18. Merz AJ, So M (1997) Attachment of piliated, Opa- and Opc- gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 65:4341–4349

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Merz AJ, Enns CA, So M (1999) Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 32:1316–1332

    Article  CAS  PubMed  Google Scholar 

  20. Merz AJ, So M (2000) Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16:423–457

    Article  CAS  PubMed  Google Scholar 

  21. Howie HL, Glogauer M, So M (2005) The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol 3:e100

    Article  PubMed Central  PubMed  Google Scholar 

  22. Higashi DL, Zhang GH, Biais N, Myers LR, Weyand NJ, Elliott DA, So M (2009) Influence of type IV pilus retraction on the architecture of the Neisseria gonorrhoeae-infected cell cortex. Microbiology 155(Pt 12):4084–4092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Tanase M, Biais N, Sheetz M (2007) Magnetic tweezers in cell biology. Trends Cell Biol 2:116–118

    Google Scholar 

  24. Kuo SC, Sheetz MP (1992) Optical tweezers in cell biology. Trends Cell Biol 2:116–118

    Article  CAS  PubMed  Google Scholar 

  25. Kollmannsberger P, Fabry B (2007) High-force magnetic tweezers with force feedback for biological applications. Rev Sci Instrum 78:114301

    Article  PubMed  Google Scholar 

  26. Webster KD, Crow A, Fletcher DA (2011) An AFM-based stiffness clamp for dynamic control of rigidity. PLoS One 6:1–7

    Google Scholar 

  27. Desprat N, Richert A, Simeon J, Asnacios A (2005) Creep function of a single living cell. Biophys J 88:2224–2233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Fouchard J, Bimbard C, Bufi N, Durand-Smet P, Proag A, Richert A, Cardoso O, Asnacios A (2014) Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions. Proc Natl Acad Sci U S A 111(36):13075–13080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jiang G, Giannone G, Critchley DR, Kukomoto E, Sheetz MP (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334-337

    Google Scholar 

  30. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77(6):3363–3370

    Google Scholar 

  31. Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP (2006) Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys J 90:1804–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Biais N, Ladoux B, Higashi D, So M, Sheetz M. (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biology 15;6(4):e87

    Google Scholar 

  33. Opitz D, Maier B (2011) Rapid cytoskeletal response of epithelial cells to force generation by type IV pili. PLoS One 6:8

    Google Scholar 

  34. Johnson HW, Schell MJ (2010) Neuronal IP3 3-kinase is an F-actin-bundling protein: role in dendritic targeting and regulation of spine morphology. Mol Biol Cell 20:5166–5180

    Google Scholar 

  35. Biais N, Higashi D, So M, Ladoux B (2012) Techniques to measure pilus retraction forces. Methods Mol Biol 799:197–216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Biais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Santos, L.C., Munteanu, E.L., Biais, N. (2016). An In Vitro Model System to Test Mechano-microbiological Interactions Between Bacteria and Host Cells. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 1365. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3124-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3124-8_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3123-1

  • Online ISBN: 978-1-4939-3124-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics