Skip to main content

Gold Nanoparticles for Biomedical Applications: Synthesis and In Vitro Evaluation

  • Protocol
Nanomaterials in Pharmacology

Abstract

Gold nanoparticles can be synthesized in a wide range of sizes and shapes. They can be coated with molecules, polymers, or phospholipids that yield solubility and stability in biological fluids. Gold is inert and is generally regarded as biocompatible. Depending on their shape and structure, gold nanoparticles can have a number of remarkable properties, such as strong and tunable attenuation of light, fluorescence, conversion of light to heat, and attenuation of X-rays. Due to these properties, gold nanoparticles have a wide range of biomedical applications. They have been used as contrast agents for fluorescence, optical, photoacoustic, and X-ray imaging. They can function as drug or gene delivery vectors. They can also play roles in photothermal or radiosensitization treatment regimens. We herein present methods to synthesize, coat, and purify spherical gold nanoparticles that are 15–100 nm in diameter. We describe protocols to characterize these gold nanoparticles with dynamic light scattering, transmission electron microscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES) and for computed tomography contrast generation. Last, we detail methods to assess nanoparticle uptake by cells, effect on cell viability, and effect on cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim BYS, Rutka JT, Chan WCW (2010) Nanomedicine. N Engl J Med 363(25):2434–2443

    Article  CAS  PubMed  Google Scholar 

  2. Briley-Saebo KC, Geninatti Crich S, Cormode DP, Barazza A, Mulder WJM, Chen W, Giovenzana GB, Fisher EA, Aime S, Fayad ZA (2009) High-relaxivity gadolinium-modified high-density lipoproteins as magnetic resonance imaging contrast agents. J Phys Chem B 113:6283–6289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Corot C, Robert P, Idee J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  CAS  PubMed  Google Scholar 

  4. Yigit MV, Moore A, Medarova Z (2012) Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 29(5):1180–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chacko AM, Hood ED, Zern BJ, Muzykantov VR (2011) Targeted nanocarriers for imaging and therapy of vascular inflammation. Curr Opin Colloid Interface Sci 16(3):215–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cheng ZL, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cormode DP, Naha P, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9(1):37–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  9. Antonie F (1616) Panacea aurea-auro potabile. John Legatt, London

    Google Scholar 

  10. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11:4029–4036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dreaden E, Alkilany A, Huang X, Murphy C, El-Sayed M (2011) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  PubMed  Google Scholar 

  12. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10(4):831–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Engl 53:1756–1789

    Article  CAS  PubMed  Google Scholar 

  14. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, Sokolov K, Emelianov SY (2009) Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 9(6):2212–2217

    Article  CAS  PubMed  Google Scholar 

  16. von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900

    Article  PubMed Central  Google Scholar 

  17. Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701

    Article  Google Scholar 

  18. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90

    Article  CAS  PubMed  Google Scholar 

  20. Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomas H, Shi X (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33(10):3025–3035

    Article  CAS  PubMed  Google Scholar 

  21. Pearson S, Scarano W, Stenzel MH (2012) Micelles based on gold-glycopolymer complexes as new chemotherapy drug delivery agents. Chem Commun 48(39):4695–4697

    Article  CAS  Google Scholar 

  22. Kong WH, Bae KH, Jo SD, Kim JS, Park TG (2012) Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm Res 29(2):362–374

    Article  CAS  PubMed  Google Scholar 

  23. Mieszawska AJ, Kim Y, Gianella A, van Rooy I, Priem B, Labarre MP, Ozcan C, Cormode DP, Petrov A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJ (2013) Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug Chem 24(9):1429–1434

    Article  CAS  PubMed  Google Scholar 

  24. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253

    Article  CAS  PubMed  Google Scholar 

  25. Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M, Yang CS, Chen YJ, Margaritondo G (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55(4):931–945

    Article  CAS  PubMed  Google Scholar 

  26. Al Zaki A, Joh D, Cheng ZL, De Barros ALB, Kao G, Dorsey J, Tsourkas A (2014) Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 8(1):104–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pilot Study of AuroLase(tm) Therapy in Refractory and/or Recurrent Tumors of the Head and Neck (Clinical trial identifier: NCT00848042). http://www.clinicaltrialsgov/ct2/show/NCT00848042

  28. Plasmonic Nanophotothermic Therapy of Atherosclerosis (NANOM) (Clinical trial identifier: NCT01270139). http://www.clinicaltrialsgov/ct2/show/NCT01270139

  29. Plasmonic Photothermal and Stem Cell Therapy of Atherosclerosis Versus Biodegradable Stenting (NANOM2) (Clinical trial identifier: NCT01436123). http://www.clinicaltrialsgov/ct2/show/NCT01436123

  30. Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, Seidel GD, Yuldasheva N, Tamarkin L (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16(24):6139–6149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  32. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  CAS  Google Scholar 

  33. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, Coleman C, Payne JD, Korgel BA, Dunn AK, Tunnell JW (2008) Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 16(3):1590–1599

    Article  CAS  PubMed  Google Scholar 

  35. Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102

    Article  PubMed Central  PubMed  Google Scholar 

  36. Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109(32):15256–15263

    Article  CAS  PubMed  Google Scholar 

  37. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  PubMed  Google Scholar 

  38. Frens G (1973) Controlled nucleation for regulation of particle size in monodisperse gold suspensions. Nat Phys Sci 241(105):20–22

    Article  CAS  Google Scholar 

  39. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131(47):17042–17043

    Article  CAS  PubMed  Google Scholar 

  40. Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ, Fayad ZA, Mulder WJ (2013) Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introducing multifunctionality. NMR Biomed 26(7):766–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Invest Radiol 42(12):797–806

    Article  CAS  PubMed  Google Scholar 

  42. Patil V, Malvankar RB, Sastry M (1999) Role of particle size in individual and competitive diffusion of carboxylic acid derivatized colloidal gold particles in thermally evaporated fatty amine films. Langmuir 15:8197–8206

    Article  CAS  Google Scholar 

  43. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem Commun 801–802

    Google Scholar 

  44. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30

    Article  CAS  Google Scholar 

  45. Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, Calcagno C, Barazza A, Gordon RE, Zanzonico P, Fisher EA, Fayad ZA, Mulder WJM (2008) Nanocrystal core high-density lipoproteins: a multimodal molecular imaging contrast agent platform. Nano Lett 8(11):3715–3723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Mieszawska AJ, Gianella A, Cormode DP, Zhao Y, Meijerink A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJM (2012) Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem Commun 48:5835–5837

    Article  CAS  Google Scholar 

  47. Allijn IE, Leong W, Tang J, Gianella A, Mieszawska AJ, Fay F, Ma G, Russell S, Callo CB, Gordon RE, Korkmaz E, Post JA, Zhao Y, Gerritsen HC, Storm G, Thran A, Proksa R, Daerr H, Fuster V, Fisher EA, Fayad ZA, Mulder WJ, Cormode DP (2013) Gold nanocrystal labeling allows low density lipoprotein imaging from the subcellular to macroscopic level. ACS Nano 7(11):9761–9770

    Article  CAS  PubMed  Google Scholar 

  48. Pham T, Jackson JB, Halas NJ, Lee TR (2002) Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18(12):4915–4920

    Article  CAS  Google Scholar 

  49. Lu XM, Au L, McLellan J, Li ZY, Marquez M, Xia YN (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)(3) or NH4OH. Nano Lett 7(6):1764–1769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1):015606

    Article  Google Scholar 

  51. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708

    Article  CAS  PubMed  Google Scholar 

  52. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJM, Proksa R, Fayad ZA (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256(3):774–782

    Article  PubMed Central  PubMed  Google Scholar 

  53. Naha P, Al-Zaki A, Hecht ER, Chorny M, Chhour P, Blankemeyer E, Yates DM, Witschey WRT, Litt HI, Tsourkas A, Cormode DP (2014) Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. J Mater Chem B Mater Biol Med 2(46):8239–8248

    Article  CAS  PubMed  Google Scholar 

  54. Liu H, Pierre-Pierre N, Huo Q (2012) Dynamic light scattering for gold nanorod size characterization and study of nanorod-protein interactions. Gold Bull 45:187–195

    Article  CAS  Google Scholar 

  55. Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–8185

    Article  CAS  PubMed  Google Scholar 

  56. Chhour P, Gallo N, Re C, Williams D, Al-Zaki A, Nichol JL, Tian Z, Paik T, Naha PC, Allcock HR, Murray CB, Tsourkas A, Cormode DP (2014) Nano-disco balls: control over surface versus core loading of diagnostically active nanocrystals into polymer nanoparticles. ACS Nano 8(9):9143–9153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Galper MW, Saung MT, Fuster V, Roessl E, Thran A, Proksa R, Fayad ZA, Cormode DP (2012) Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Invest Radiol 47(8):475–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Jackson PA, Rahman WNWA, Wong CJ, Ackerly T, Geso M (2010) Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 75(1):104–109

    Article  PubMed  Google Scholar 

  59. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  60. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  61. Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang XJ (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5(11):8629–8639

    Article  CAS  PubMed  Google Scholar 

  62. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  63. Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6(7):5767–5783

    Article  CAS  PubMed  Google Scholar 

  64. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  CAS  PubMed  Google Scholar 

  66. Chuang SM, Lee YH, Liang RY, Roam GD, Zeng ZM, Tu HF, Wang SK, Chueh PJ (2013) Extensive evaluations of the cytotoxic effects of gold nanoparticles. Biochim Biophys Acta 1830(10):4960–4973

    Article  CAS  PubMed  Google Scholar 

  67. Schaeublin NM, Braydich-Stolle LK, Maurer EI, Park K, MacCuspie RI, Afrooz AR, Vaia RA, Saleh NB, Hussain SM (2012) Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28(6):3248–3258

    Article  CAS  PubMed  Google Scholar 

  68. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900

    Article  CAS  PubMed  Google Scholar 

  69. Cai H, Yao P (2014) Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids Surf B Biointerfaces 123:900–906

    Article  CAS  PubMed  Google Scholar 

  70. Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216

    Article  CAS  PubMed  Google Scholar 

  71. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949

    Article  CAS  PubMed  Google Scholar 

  72. Naha PC, Bhattacharya K, Tenuta T, Dawson KA, Lynch I, Gracia A, Lyng FM, Byrne HJ (2010) Intracellular localisation, geno- and cytotoxic response of polyN-isopropylacrylamide (PNIPAM) nanoparticles to human keratinocyte (HaCaT) and colon cells (SW 480). Toxicol Lett 198(2):134–143

    Article  CAS  PubMed  Google Scholar 

  73. Naha PC, Davoren M, Lyng FM, Byrne HJ (2010) Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol 246(1–2):91–99

    Article  CAS  PubMed  Google Scholar 

  74. Wu YL, Putcha N, Ng KW, Leong DT, Lim CT, Loo SC, Chen X (2013) Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc Chem Res 46(3):782–791

    Article  CAS  PubMed  Google Scholar 

  75. Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448

    Article  CAS  PubMed  Google Scholar 

  76. Naha P, Chhour P, Cormode DP (2015) Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicology In Vitro, 29:1445–1453

    Google Scholar 

Download references

Acknowledgements

This work was supported by R00 EB012165 (D.P.C.), T32 HL007954 (P.C.), and the W. W. Smith Charitable Trust. We also thank the University of Pennsylvania for start-up funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Cormode Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chhour, P., Naha, P.C., Cheheltani, R., Benardo, B., Mian, S., Cormode, D.P. (2016). Gold Nanoparticles for Biomedical Applications: Synthesis and In Vitro Evaluation. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics