Skip to main content

Respiratory System

  • Protocol
Nanomaterials in Pharmacology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1849 Accesses

Abstract

The potential therapeutic benefits of drug molecules can be maximized by well-designed delivery technology. Improvements in nanotechnology have facilitated innovations in pulmonary drug delivery, because inhalation is a drug administration route for which the size of particles in the formulation has an extensive effect on the fate of the drug molecules after administration. Deposition site of the drug in the lung is determined by the aerodynamic size of the inhaled particles, and the absorption and clearance processes after deposition also are influenced by particle size. Inhalation of a nanoparticulate drug is the simplest idea to apply nanotechnology in this field, but it is not technically easy because nanoparticulate drugs are prone to aggregate. Thus, various efforts have been made to prevent aggregation for exerting advantages of nanoparticles. This chapter describes various efforts for utilizing nanotechnology for pulmonary drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Delivery Rev 19:3–36

    Article  CAS  Google Scholar 

  2. Patton JS, Fishburn CS, Weers JG (2004) The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 1:338–344

    Article  CAS  PubMed  Google Scholar 

  3. Shoyele SA, Slowey A (2006) Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J Pharm 314:1–8

    Article  CAS  PubMed  Google Scholar 

  4. Katz IM, Schroeter JD, Martonen TB (2001) Factor affecting the deposition of aerosolized insulin. Diabetes Technol Ther 3:387–397

    Article  CAS  PubMed  Google Scholar 

  5. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74

    Article  CAS  PubMed  Google Scholar 

  6. Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL (2007) Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 24:203–227

    Article  CAS  PubMed  Google Scholar 

  7. Glover W, Chan HK, Eberl S, Daviskas E, Verschuer J (2008) Effect of particle size of dry powder mannitol on the lung deposition in healthy volunteers. Int J Pharm 349:314–322

    Article  CAS  PubMed  Google Scholar 

  8. Park SS, Wexler AS (2008) Size-dependent deposition of particles in the human lung at steady-state breathing. J Aerosol Sci 39:266–276

    Article  CAS  Google Scholar 

  9. Smith H (1994) ICRP publication 66: human respiratory tract model for radiological protection. Pergamon, New York

    Google Scholar 

  10. Zhang J, Wu L, Chan HK, Watanabe W (2011) Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 63:441–455

    Article  CAS  PubMed  Google Scholar 

  11. Geiser M (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulmonary Drug Deliv 23:207–217

    Article  CAS  Google Scholar 

  12. Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y (2005) Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 102:373–381

    Article  CAS  PubMed  Google Scholar 

  13. FDA Guidance for Industry (2014) Considering whether an FDA-regulated product involves the application of nanotechnology

    Google Scholar 

  14. Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 63:427–440

    Article  CAS  PubMed  Google Scholar 

  15. Kawakami K (2012) Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv Drug Deliv Rev 64:480–495

    Article  CAS  PubMed  Google Scholar 

  16. Ali R, Jain GK, Iqbal Z, Talegaonkar S, Pandit P, Sule S, Malhotra G, Khar RK, Bhatnagar A, Ahmad FJ (2009) Development and clinical trial of nano-atropine sulfate dry powder inhaler as a novel organophosphorous poisoning antidote. Nanomedicine 5:55–63

    Article  CAS  PubMed  Google Scholar 

  17. Shrewsbury SB, Bosco AP, Uster PS (2009) Pharmacokinetics of a novel submicron budesonide dispersion for nebulized delivery in asthma. Int J Pharm 365:12–17

    Article  CAS  PubMed  Google Scholar 

  18. Chiang PC, Hu Y, Blom JD, Thompson DC (2010) Evaluating the suitability of using rat models for preclinical efficacy and side effects with inhaled corticosteroids nanosuspension formulations. Nanoscale Res Lett 5:1010–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ungaro F, d’Angelo I, Miro A, La Rotonda MI, Quaglia F (2012) Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol 64:1217–1235

    Article  CAS  PubMed  Google Scholar 

  20. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B (2003) Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemther 52:981–986

    Article  CAS  Google Scholar 

  21. Sharma A, Sharma S, Khuller GK (2004) Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemther 54:761–766

    Article  CAS  Google Scholar 

  22. Beck-Broichsitter M, Merkel OM, Kissel T (2012) Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release 161:214–224

    Article  CAS  PubMed  Google Scholar 

  23. Lo Y, Tsai J, Kuo J (2004) Liposomes and saccharides as carriers in spray-dried powder formulations of superoxide dismutase. J Control Release 94:259–272

    Article  CAS  PubMed  Google Scholar 

  24. Lu D, Hickey AJ (2005) Liposomal dry powders as aerosols for pulmonary delivery of proteins. AAPS PharmSciTech 6:E641–E648

    Article  PubMed Central  PubMed  Google Scholar 

  25. Chono S, Fukuchi R, Seki T, Morimoto K (2009) Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. J Control Release 137:104–109

    Article  CAS  PubMed  Google Scholar 

  26. Hung OR, Whynot SC, Varvel JR, Shafer SL, Mezei M (1995) Pharmacokinetics of inhaled liposome-encapsulated fentanyl. Anesthesiology 83:277–284

    Article  CAS  PubMed  Google Scholar 

  27. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A 99:12001–12005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hadinoto K, Phanapavudhikul P, Kewu Z, Tan RBH (2006) Novel formulation of large hollow nanoparticles aggregates as potential carriers in inhaled delivery of nanoparticulate drugs. Ind Eng Chem Res 45:3697–3706

    Article  CAS  Google Scholar 

  29. Vehring R (2007) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kawakami K, Hasegawa Y, Deguchi K, Ohki S, Shimizu T, Yoshihashi Y, Yonemochi E, Terada K (2013) Competition of thermodynamic and dynamic factors during formation of multi-component particles via spray-drying. J Pharm Sci 102:518–529

    Article  CAS  PubMed  Google Scholar 

  31. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570

    Article  CAS  PubMed  Google Scholar 

  32. Sung JC, Padilla DJ, Garcia-Contreras L, VerBerkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA (2009) Formulation and pharmacokinetics of self-assembles rifampicin nanoparticle systems for pulmonary delivery. Pharm Res 26:1847–1855

    Article  CAS  PubMed  Google Scholar 

  33. Yang L, Luo J, Shi S, Zhang Q, Sun X, Zhang Z, Gong T (2013) Development of a pulmonary peptide delivery system using porous nanoparticle-aggregate particles for systemic application. Int J Pharm 451:104–111

    Article  CAS  PubMed  Google Scholar 

  34. Kraft KS, Grant M (2009) Preparation of macromolecule-containing dry powders for pulmonary delivery. In: Belting M (ed) Macromolecular drug delivery. Humana Press, New York, pp 165–174

    Chapter  Google Scholar 

  35. Ohashi K, Kabasawa T, Ozeki T, Okada H (2009) One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release 135:19–24

    Article  CAS  PubMed  Google Scholar 

  36. Ungaro F, d’Angelo I, Coletta C, d’Emmanuele di Villa Bianca R, Sorrentino R, Perfetto B, Tufano MA, Miro A, La Rotonda MI, Quaglia F (2012) Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release 157:149–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was in part supported by World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohsaku Kawakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kawakami, K. (2016). Respiratory System. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics