Skip to main content

Application of Variable Angle Total Internal Reflection Fluorescence Microscopy to Investigate Protein Dynamics in Intact Plant Cells

  • Protocol
Plant Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1363))

Abstract

Variable angle total internal reflection fluorescence microscopy (VA-TIRFM) is an optical method to observe the molecular events occurring in an extremely thin region near the plasma membrane. Recently, the VA-TIRFM technique has been widely used to study fluorescently labeled target molecules in living animal and plant cells. Here, we describe the optical principle of the VA-TIRFM technique and provide a detailed experimental procedure for the study of living plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fish K (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom 12, Unit 12.18

    Google Scholar 

  2. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  3. Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303

    Article  CAS  PubMed  Google Scholar 

  4. Schneckenburger H (2005) Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr Opin Biotechnol 16:13–18

    Article  CAS  PubMed  Google Scholar 

  5. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–196

    Article  CAS  PubMed  Google Scholar 

  6. Gutierrez R, Grossmann G, Frommer WB, Ehrhardt DW (2010) Opportunities to explore plant membrane organization with super-resolution microscopy. Plant Physiol 154:463–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wan Y, Ash WM III, Fan L, Hao H, Kim MK, Lin J (2011) Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods 7:27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Li X, Wang X, Yang Y, Li R, He Q, Fang X et al (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U et al (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–2122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang Q, Zhao Y, Luo W, Li R, He Q, Fang X et al (2013) Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proc Natl Acad Sci U S A 110:13204–13209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fan L, Hao H, Xue Y, Zhang L, Song K, Ding Z et al (2013) Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140:3826–3837

    Article  CAS  PubMed  Google Scholar 

  12. Hao H, Fan L, Chen T, Li R, Li X, He Q et al (2014) Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26:1729–1745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Vizcay-Barrena G, Webb SE, Martin-Fernandez ML, Wilson ZA (2011) Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J Exp Bot 62:5419–5428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200

    Article  PubMed  Google Scholar 

  15. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O et al (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed Central  PubMed  Google Scholar 

  16. Matov A, Applegate K, Kumar P, Thoma C, Krek W, Danuser G et al (2010) Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods 7:761–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95:2009–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lu W, del Castillo U, Gelfand VI (2013) Organelle transport in cultured Drosophila cells: S2 cell line and primary neurons. J Vis Exp 81:e50838

    PubMed  Google Scholar 

  19. Mashanov GI, Molloy JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92:2199–2211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S et al (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107:2693–2698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sergé A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687–694

    Article  PubMed  Google Scholar 

  22. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151:182–195

    Article  CAS  PubMed  Google Scholar 

  23. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  24. Rogers SS, Waigh TA, Zhao X, Lu JR (2007) Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys Biol 4:220–227

    Article  CAS  PubMed  Google Scholar 

  25. Smith MB, Karatekin E, Gohlke A, Mizuno H, Watanabe N, Vavylonis D (2011) Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys J 101:1794–1804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cai D, Verhey KJ, Meyhöfer E (2007) Tracking single Kinesin molecules in the cytoplasm of mammalian cells. Biophys J 92:4137–4144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sage D, Neumann FR, Hediger F, Gasser SM, Unser M (2005) Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14:1372–1383

    Article  PubMed  Google Scholar 

  28. Bacher CP, Reichenzeller M, Athale C, Herrmann H, Eils R (2004) 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin-poor tracks. BMC Cell Biol 5:1–14

    Article  Google Scholar 

  29. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our works were supported by the Fundamental Research Funds for the Central Universities (JC2013-2), Program for New Century Excellent Talents in University (NCET-12-0785), Key Grant Project of Chinese Ministry of Education (No. 313008), and the National Natural Science Foundation of China (31271433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxing Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wan, Y., Xue, Y., Li, R., Lin, J. (2016). Application of Variable Angle Total Internal Reflection Fluorescence Microscopy to Investigate Protein Dynamics in Intact Plant Cells. In: Botella, J., Botella, M. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 1363. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3115-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3115-6_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3114-9

  • Online ISBN: 978-1-4939-3115-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics