Skip to main content

Synthetic SiRNA Delivery: Progress and Prospects

  • Protocol
Book cover SiRNA Delivery Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1364))

Abstract

Small interfering RNA (siRNA) is a powerful tool for modulating gene expression by RNA interference (RNAi). Duplex RNA oligonucleotides induce cleavage of homologous target transcripts, thereby enabling posttranscriptional silencing of potentially any gene. As such, siRNAs may have utility as novel pharmaceuticals for a wide range of diseases. However, a lack of “drug-likeness,” physiological barriers, and potential toxicities have meant that systemic delivery of SiRNAs in vivo remains a major challenge. Here we discuss various strategies that have been employed to solve the problem of SiRNA delivery. These include chemical modification of the SiRNA, direct conjugation to bioactive moieties, and nanoparticle formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  4. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  PubMed  Google Scholar 

  5. Rand TA, Petersen S, Du FH, Wang XD (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  CAS  PubMed  Google Scholar 

  6. Liu JD, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  7. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  CAS  PubMed  Google Scholar 

  8. Yu DB, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, Lima WF, Crooke ST, Prakash TP, Corey DR (2012) Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 150:895–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lima WF, Prakash TP, Murray HM, Kinberger GA, Li WY, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, Swayze EE, Crooke ST (2012) Single-stranded siRNAs activate RNAi in animals. Cell 150:883–894

    Article  CAS  PubMed  Google Scholar 

  10. Byrne M, Tzekov R, Wang Y, Rodgers A, Cardia J, Ford G, Holton K, Pandarinathan L, Lapierre J, Stanney W, Bulock K, Shaw S, Libertine L, Fettes K, Khvorova A, Kaushal S, Pavco P (2013) Novel hydrophobically modified asymmetric RNAi compounds (sd-rxRNA) demonstrate robust efficacy in the eye. J Ocul Pharmacol Ther 29:855–864

    Article  CAS  PubMed  Google Scholar 

  11. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yuan ZP, Wu XL, Liu C, Xu GX, Wu ZW (2012) Asymmetric siRNA: new strategy to improve specificity and reduce off-target gene expression. Hum Gene Ther 23:521–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bramsen JB, Laursen MB, Damgaard CK, Lena SW, Babu BR, Wengel J, Kjems J (2007) Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 35:5886–5897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Dallas A, Ilves H, Shorenstein J, Judge A, Spitler R, Contag C, Wong SP, Harbottle RP, MacLachlan I, Johnston BH (2013) Minimal-length Synthetic shRNAs Formulated with Lipid Nanoparticles are Potent Inhibitors of Hepatitis C Virus IRES-linked Gene Expression in Mice. Mol Ther Nucleic Acids 2, e123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Gao S, Dagnaes-Hansen F, Nielsen EJB, Wengel J, Besenbacher F, Howard KA, Kjems J (2009) The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 17:1225–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tsui NBY, Ng EKO, Lo YMD (2002) Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 48:1647–1653

    CAS  PubMed  Google Scholar 

  17. Dowler T, Bergeron D, Tedeschi AL, Paquet L, Ferrari N, Damha MJ (2006) Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res 34:1669–1675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  CAS  PubMed  Google Scholar 

  19. Zeng Y, Cullen BR (2002) RNA interference in human cells is restricted to the cytoplasm. RNA 8:855–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gagnon KT, Li LD, Chu YJ, Janowski BA, Corey DR (2014) RNAi factors are present and active in human cell nuclei. Cell Rep 6:211–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Robb GB, Brown KM, Khurana J, Rana TM (2005) Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12:133–137

    Article  CAS  PubMed  Google Scholar 

  22. Roberts TC (2014) The MicroRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids 3, e188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, Karagiannis E, Love K, Chen DL, Zoncu R, Buganim Y, Schroeder A, Langer R, Anderson DG (2013) Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 31:653–658

    Article  CAS  PubMed  Google Scholar 

  24. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias (vol 115, pg 209, 2003). Cell 115:505

    Article  CAS  Google Scholar 

  25. Schwarz DS, Hutvagner G, Du T, Xu ZS, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  26. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 101:1892–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Persengiev SP, Zhu XC, Green MR (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10:12–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  CAS  PubMed  Google Scholar 

  30. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  CAS  PubMed  Google Scholar 

  31. Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19:89–101

    Article  CAS  PubMed  Google Scholar 

  32. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  PubMed  Google Scholar 

  33. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hong J, Qian ZK, Shen SY, Min TS, Tan C, Xu JF, Zhao YC, Huang WD (2005) High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse. Biochem J 390:675–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  CAS  PubMed  Google Scholar 

  36. John M, Constien R, Akinc A, Goldberg M, Moon YA, Spranger M, Hadwiger P, Soutschek J, Vornlocher HP, Manoharan M, Stoffel M, Langer R, Anderson DG, Horton JD, Koteliansky V, Bumcrot D (2007) Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 449:745–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Snead NM, Escamilla-Powers JR, Rossi JJ, McCaffrey AP (2013) 5′ unlocked nucleic acid modification improves siRNA targeting. Mol Ther Nucleic Acids 2, e103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, Babu BR, Hojland T, Abramov M, Van Aerschot A, Odadzic D, Smicius R, Haas J, Andree C, Barman J, Wenska M, Srivastava P, Zhou CZ, Honcharenko D, Hess S, Muller E, Bobkov GV, Mikhailov SN, Fava E, Meyer TF, Chattopadhyaya J, Zerial M, Engels JW, Herdewijn P, Wengel J, Kjems J (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 37:2867–2881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Choung S, Kim YJ, Kim S, Park HO, Choi YC (2006) Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 342:919–927

    Article  CAS  PubMed  Google Scholar 

  40. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13:83–105

    Article  CAS  PubMed  Google Scholar 

  41. Geary RS, Yu RZ, Levin AA (2001) Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs 2:562–573

    CAS  PubMed  Google Scholar 

  42. Overhoff M, Sczakiel G (2005) Phosphorothioate-stimulated uptake of short interfering RNA by human cells. EMBO Rep 6:1176–1181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Krieg AM, Stein CA (1995) Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res Dev 5:241

    CAS  PubMed  Google Scholar 

  44. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  CAS  PubMed  Google Scholar 

  46. Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hall AHS, Wan J, Shaughnessy EE, Shaw BR, Alexander KA (2004) RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 32:5991–6000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Hohjoh H (2002) RNA interference (RNAi) induction with various types of synthetic oligonucleotide duplexes in cultured human cells. FEBS Lett 521:195–199

    Article  CAS  PubMed  Google Scholar 

  49. Boutla A, Delidakis C, Livadaras I, Tabler M (2003) Variations of the 3′ protruding ends in synthetic short interfering RNA (siRNA) tested by microinjection in Drosophila embryos. Oligonucleotides 13:295–301

    Article  CAS  PubMed  Google Scholar 

  50. Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-II. Mol Ther 20:483–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, Juni A, Saigo K (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 36:2136–2151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48:901–904

    Article  CAS  PubMed  Google Scholar 

  53. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  CAS  PubMed  Google Scholar 

  55. Hoshika S, Minakawa N, Kamiya H, Harashima H, Matsuda A (2005) RNA interference induced by siRNAs modified with 4′-thioribonucleosides in cultured mammalian cells. FEBS Lett 579:3115–3118

    Article  CAS  PubMed  Google Scholar 

  56. Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 49:1624–1634

    Article  CAS  PubMed  Google Scholar 

  57. Watts JK, Choubdar N, Sadalapure K, Robert F, Wahba AS, Pelletier J, Pinto BM, Damha MJ (2007) 2′-fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Res 35:1441–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Langkjaer N, Pasternak A, Wengel J (2009) UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg Med Chem 17:5420–5425

    Article  CAS  PubMed  Google Scholar 

  59. Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Mook OR, Baas F, de Wissel MB, Fluiter K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6:833–843

    Article  CAS  PubMed  Google Scholar 

  61. Morita K, Hasegawa C, Kaneko M, Tsutsumi S, Sone J, Ishikawa T, Imanishi T, Koizumi M (2002) 2′-O,4′-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg Med Chem Lett 12:73–76

    Article  CAS  PubMed  Google Scholar 

  62. Xia J, Noronha A, Toudjarska I, Li F, Akinc A, Braich R, Frank-Kamenetsky M, Rajeev KG, Egli M, Manoharan M (2006) Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide. ACS Chem Biol 1:176–183

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Pendergraff H, Narayanannair KJ, Lackey JG, Kuchimanchi S, Rajeev KG, Manoharan M, Hu J, Corey DR (2013) RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression. Nucleic Acids Res 41:8788–8801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Chorn G, Zhao L, Sachs AB, Flanagan WM, Lim LP (2010) Persistence of seed-based activity following segmentation of a microRNA guide strand. RNA 16:2336–2340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    Article  CAS  PubMed  Google Scholar 

  66. McNamara JO 2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  CAS  PubMed  Google Scholar 

  67. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO 2nd, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Dohmen C, Frohlich T, Lachelt U, Rohl I, Vornlocher HP, Hadwiger P, Wagner E (2012) Defined folate-PEG-siRNA conjugates for receptor-specific gene silencing. Mol Ther Nucleic Acids 1, e7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Jeong JH, Mok H, Oh YK, Park TG (2009) siRNA conjugate delivery systems. Bioconjug Chem 20:5–14

    Article  CAS  PubMed  Google Scholar 

  70. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  CAS  PubMed  Google Scholar 

  71. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, Zimmermann T, Koteliansky V, Manoharan M, Stoffel M (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25:1149–1157

    Article  CAS  PubMed  Google Scholar 

  72. Nishina K, Unno T, Uno Y, Kubodera T, Kanouchi T, Mizusawa H, Yokota T (2008) Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther 16:734–740

    Article  CAS  PubMed  Google Scholar 

  73. Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A (2014) PEG—a versatile conjugating ligand for drugs and drug delivery systems. J Control Release 192:67–81

    Article  CAS  PubMed  Google Scholar 

  74. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG (2006) PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release 116:123–129

    Article  CAS  PubMed  Google Scholar 

  75. Iversen F, Yang C, Dagnaes-Hansen F, Schaffert DH, Kjems J, Gao S (2013) Optimized siRNA-PEG conjugates for extended blood circulation and reduced urine excretion in mice. Theranostics 3:201–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ezzat K, El Andaloussi S, Abdo R, Langel U (2010) Peptide-based matrices as drug delivery vehicles. Curr Pharm Des 16:1167–1178

    Article  CAS  PubMed  Google Scholar 

  77. Verdurmen WPR, Brock R (2011) Biological responses towards cationic peptides and drug carriers. Trends Pharmacol Sci 32:116–124

    Article  CAS  PubMed  Google Scholar 

  78. Chiu YL, Ali A, Chu CY, Cao H, Rana TM (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol 11:1165–1175

    Article  CAS  PubMed  Google Scholar 

  79. Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558:63–68

    Article  CAS  PubMed  Google Scholar 

  80. Davidson TJ, Harel S, Arboleda VA, Prunell GF, Shelanski ML, Greene LA, Troy CM (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 24:10040–10046

    Article  CAS  PubMed  Google Scholar 

  81. Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, Barnes PJ, Sproat BS, Gait MJ, Lindsay MA (2007) Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 18:1450–1459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Rensen PCN, Sliedregt LAJM, Ferns A, Kieviet E, van Rossenberg SMW, van Leeuwen SH, van Berkel TJC, Biessen EAL (2001) Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J Biol Chem 276:37577–37584

    Article  CAS  PubMed  Google Scholar 

  83. Biessen EAL, Sliedregt-Bol K, Hoen PACT, Prince P, Van der Bilt E, Valentijn ARPM, Meeuwenoord NJ, Princen H, Bijsterbosch MK, Van der Marel GA, Van Boom JH, Van Berkel TJC (2002) Design of a targeted peptide nucleic acid prodrug to inhibit hepatic human microsomal triglyceride transfer protein expression in hepatocytes. Bioconjug Chem 13:295–302

    Article  CAS  PubMed  Google Scholar 

  84. Prakash TP, Graham MJ, Yu JH, Carty R, Low A, Chappell A, Schmidt K, Zhao CG, Aghajan M, Murray HF, Riney S, Booten SL, Murray SF, Gaus H, Crosby J, Lima WF, Guo SL, Monia BP, Swayze EE, Seth PP (2014) Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res 42:8796–8807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Zheng D, Giljohann DA, Chen DL, Massich MD, Wang XQ, Iordanov H, Mirkin CA, Paller AS (2012) Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A 109:11975–11980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. Journal of the American Chemical Society 131:2072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36

    CAS  Google Scholar 

  89. Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN, De Smedt SC, Behe M, Kissel T (2009) Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J Control Release 138:148–159

    Article  CAS  PubMed  Google Scholar 

  90. Wang XL, Xu RZ, Lu ZR (2009) A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery. J Control Release 134:207–213

    Article  CAS  PubMed  Google Scholar 

  91. Wagner E (2012) Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45:1005–1013

    Article  CAS  PubMed  Google Scholar 

  92. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang QQ, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32

    Google Scholar 

  93. Troiber C, Edinger D, Kos P, Schreiner L, Klager R, Herrmann A, Wagner E (2013) Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials 34:1624–1633

    Article  CAS  PubMed  Google Scholar 

  94. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S, Heidel JD (2004) Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem 11:179–197

    Article  CAS  PubMed  Google Scholar 

  97. Shen JL, Kim HC, Su H, Wang F, Wolfram J, Kirui D, Mai JH, Mu CF, Ji LN, Mao ZW, Shen HF (2014) Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4:487–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Godinho BMDC, Ogier JR, Quinlan A, Darcy R, Griffin BT, Cryan JF, Driscoll CM (2014) PEGylated cyclodextrins as novel siRNA nanosystems: correlations between polyethylene glycol length and nanoparticle stability. Int J Pharm 473:105–112

    Article  CAS  PubMed  Google Scholar 

  99. Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6:752–762

    Article  CAS  PubMed  Google Scholar 

  100. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection—a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Tam YY, Chen S, Cullis PR (2013) Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5:498–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  CAS  PubMed  Google Scholar 

  103. Semple SC, Akinc A, Chen JX, Sandhu AP, Mui BL, Cho CK, Sah DWY, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen QM, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28:172–176

    Article  CAS  PubMed  Google Scholar 

  104. Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen JX, Du XY, Butler D, Eltepu L, Matsuda S, Narayanannair JK, Rajeev KG, Hafez IM, Akinc A, Maier MA, Tracy MA, Cullis PR, Madden TD, Manoharan M, Hope MJ (2012) Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 51:8529–8533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Rungta RL, Choi HB, Lin PJ, Ko RW, Ashby D, Nair J, Manoharan M, Cullis PR, Macvicar BA (2013) Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol Ther Nucleic Acids 2, e136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977

    Article  CAS  PubMed  Google Scholar 

  107. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C, Maier M, Jayaprakash KN, Jayaraman M, Rajeev KG, Manoharan M, Koteliansky V, Rohl I, Leshchiner ES, Langer R, Anderson DG (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17:872–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, Qin J, Cantley W, Qin LL, Racie T, Frank-Kamenetsky M, Yip KN, Alvarez R, Sah DW, de Fougerolles A, Fitzgerald K, Koteliansky V, Akinc A, Langer R, Anderson DG (2010) Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A 107:1864–1869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Novobrantseva TI, Borodovsky A, Wong J, Klebanov B, Zafari M, Yucius K, Querbes W, Ge P, Ruda VM, Milstein S, Speciner L, Duncan R, Barros S, Basha G, Cullis P, Akinc A, Donahoe JS, Narayanannair Jayaprakash K, Jayaraman M, Bogorad RL, Love K, Whitehead K, Levins C, Manoharan M, Swirski FK, Weissleder R, Langer R, Anderson DG, de Fougerolles A, Nahrendorf M, Koteliansky V (2012) Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol Ther Nucleic Acids 1, e4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Dahlman JE, Barnes C, Khan OF, Thiriot A, Jhunjunwala S, Shaw TE, Xing YP, Sager HB, Sahay G, Speciner L, Bader A, Bogorad RL, Yin H, Racie T, Dong YZ, Jiang S, Seedorf D, Dave A, Sandhu KS, Webber MJ, Novobrantseva T, Ruda VM, Lytton-Jean AKR, Levins CG, Kalish B, Mudge DK, Perez M, Abezgauz L, Dutta P, Smith L, Charisse K, Kieran MW, Fitzgerald K, Nahrendorf M, Danino D, Tuder RM, von Andrian UH, Akinc A, Panigrahy D, Schroeder A, Koteliansky V, Langer R, Anderson DG (2014) In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol 9:648–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25:2730–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Mae M, El Andaloussi S, Lehto T, Langel U (2009) Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 6:1195–1205

    Article  PubMed  CAS  Google Scholar 

  114. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Deshayes S, Morris M, Heitz F, Divita G (2008) Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 60:537–547

    Article  CAS  PubMed  Google Scholar 

  116. Simeoni F, Morris MC, Heitz F, Divita G (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31:2717–2724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Weller K, Lauber S, Lerch M, Renaud A, Merkle HP, Zerbe O (2005) Biophysical and biological studies of end-group-modified derivatives of Pep-1. Biochemistry 44:15799–15811

    Article  CAS  PubMed  Google Scholar 

  118. Gros E, Deshayes S, Morris MC, Aldrian-Herrada G, Depollier J, Heitz F, Divita G (2006) A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta 1758:384–393

    Article  CAS  PubMed  Google Scholar 

  119. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17:95–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Kim WL, Christensen LV, Jo S, Yockman JW, Jeong JH, Kim YH, Kim SW (2006) Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther 14:343–350

    Article  PubMed  CAS  Google Scholar 

  121. Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K, Harashima H, Sugiura Y (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 12:1005–1011

    Article  CAS  PubMed  Google Scholar 

  122. Lehto T, Ezzat K, Langel U (2011) Peptide nanoparticles for oligonucleotide delivery. Prog Mol Biol Transl Sci 104:397–426

    Article  CAS  PubMed  Google Scholar 

  123. Andaloussi SEL, Lehto T, Mager I, Rosenthal-Aizman K, Oprea II, Simonson OE, Sork H, Ezzat K, Copolovici DM, Kurrikoff K, Viola JR, Zaghloul EM, Sillard R, Johansson HJ, Hassane FS, Guterstam P, Suhorutsenko J, Moreno PMD, Oskolkov N, Halldin J, Tedebark U, Metspalu A, Lebleu B, Lehtio J, Smith CIE, Langel U (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39:3972–3987

    Article  PubMed  CAS  Google Scholar 

  124. Ezzat K, Zaghloul EM, Andaloussi SEL, Lehto T, El-Sayed R, Magdy T, Smith CIE, Langel U (2012) Solid formulation of cell-penetrating peptide nanocomplexes with siRNA and their stability in simulated gastric conditions. J Control Release 162:1–8

    Article  CAS  PubMed  Google Scholar 

  125. Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, Dowdy SF (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27:567–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Michiue H, Eguchi A, Scadeng M, Dowdy SF (2009) Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma. Cancer Biol Ther 8:2306–2313

    Article  PubMed  Google Scholar 

  127. Corey DR (2007) RNA learns from antisense. Nat Chem Biol 3:8–11

    Article  CAS  PubMed  Google Scholar 

  128. Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, Mc Master G, Coll JL, Heitz F, Divita G (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 37:4559–4569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Morris MC, Chaloin L, Choob M, Archdeacon J, Heitz F, Divita G (2004) Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression. Gene Ther 11:757–764

    Article  CAS  PubMed  Google Scholar 

  130. Morris MC, Gros E, Aldrian-Herrada G, Choob M, Archdeacon J, Heitz F, Divita G (2007) A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res 35, e49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Khalil IA, Futaki S, Niwa M, Baba Y, Kaji N, Kamiya H, Harashima H (2004) Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Ther 11:636–644

    Article  CAS  PubMed  Google Scholar 

  132. Lehto T, Abes R, Oskolkov N, Suhorutsenko J, Copolovici DM, Mager I, Viola JR, Simonson OE, Ezzat K, Guterstam P, Eriste E, Smith CIE, Lebleu B, El Andaloussi S, Langel U (2010) Delivery of nucleic acids with a stearylated (RxR)(4) peptide using a non-covalent co-incubation strategy. J Control Release 141:42–51

    Article  CAS  PubMed  Google Scholar 

  133. Lehto T, Simonson OE, Mager I, Ezzat K, Sork H, Copolovici DM, Viola JR, Zaghloul EM, Lundin P, Moreno PMD, Mae M, Oskolkov N, Suhorutsenko J, Smith CIE, Andaloussi SEL (2011) A peptide-based vector for efficient gene transfer in vitro and in vivo. Mol Ther 19:1457–1467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Ezzat K, El Andaloussi S, Zaghloul EM, Lehto T, Lindberg S, Moreno PMD, Viola JR, Magdy T, Abdo R, Guterstam P, Sillard R, Hammond SM, Wood MJA, Arzumanov AA, Gait MJ, Smith CIE, Hallbrink M, Langel U (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39:5284–5298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Oskolkov N, Arukuusk P, Copolovici DM, Lindberg S, Margus H, Padari K, Pooga M, Langel U (2011) NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. Int J Pept Res Ther 17:147–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc S. Weinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roberts, T.C., Ezzat, K., EL Andaloussi, S., Weinberg, M.S. (2016). Synthetic SiRNA Delivery: Progress and Prospects. In: Shum, K., Rossi, J. (eds) SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3112-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3112-5_23

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3111-8

  • Online ISBN: 978-1-4939-3112-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics