Skip to main content

Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Experimental Procedures

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

An estimated 5–10 % of protein-coding genes in eukaryotic genomes encode RNA-binding proteins (RBPs). Through dynamic changes in RNA recognition, RBPs posttranscriptionally regulate the biogenesis, transport, inheritance, storage, and degradation of RNAs. Understanding such widespread RBP-mediated posttranscriptional regulatory mechanisms requires comprehensive discovery of the in vivo binding sites of RBPs. Here, we describe the experimental procedures of the gPAR-CLIP-seq (global photoactivatable-ribonucleoside-enhanced cross-linking and precipitation followed by deep sequencing) approach we recently developed for capturing and sequencing regions of the transcriptome bound by RBPs in budding yeast. Unlike the standard PAR-CLIP method, which identifies the bound RNA substrates for a single RBP, the gPAR-CLIP-seq method was developed to isolate and sequence all mRNA sites bound by the cellular “RBPome.” The gPAR-CLIP-seq approach is readily applicable to a variety of organisms and cell lines to profile global RNA–protein interactions underlying posttranscriptional gene regulation. The complete landscape of RBP binding sites provides insights to the function of all RNA cis-regulatory elements in an organism and reveals fundamental mechanisms of posttranscriptional gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  CAS  PubMed  Google Scholar 

  2. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309(5740):1514–1518. doi:10.1126/science.1111443

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell 54(4):547–558. doi:10.1016/j.molcel.2014.04.033

    Article  CAS  PubMed  Google Scholar 

  4. Tsvetanova NG, Klass DM, Salzman J, Brown PO (2010) Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5(9):pii: e12671, doi:10.1371/journal.pone.0012671

    Article  Google Scholar 

  5. Scherrer T, Mittal N, Janga SC, Gerber AP (2010) A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS One 5(11):e15499. doi:10.1371/journal.pone.0015499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406. doi:10.1016/j.cell.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  7. Kwon SC, Yi H, Eichelbaum K, Fohr S, Fischer B, You KT, Castello A, Krijgsveld J, Hentze MW, Kim VN (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20(9):1122–1130. doi:10.1038/nsmb.2638

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell SF, Jain S, She M, Parker R (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127–133. doi:10.1038/nsmb.2468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6(10), e255. doi:10.1371/journal.pbio.0060255

    Article  PubMed Central  PubMed  Google Scholar 

  10. Riordan DP, Herschlag D, Brown PO (2010) Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome. Nucleic Acids Res 39(4):1501–1509. doi:10.1093/nar/gkq920

    Article  PubMed Central  PubMed  Google Scholar 

  11. Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46(5):674–690. doi:10.1016/j.molcel.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  12. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. doi:10.1126/science.1090095

    Article  CAS  PubMed  Google Scholar 

  13. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi:10.1016/j.cell.2010.03.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17(2):173–179. doi:10.1038/nsmb.1745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Creamer TJ, Darby MM, Jamonnak N, Schaughency P, Hao H, Wheelan SJ, Corden JL (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7(10), e1002329. doi:10.1371/journal.pgen.1002329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M, Rajewsky N (2011) Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 43(3):340–352. doi:10.1016/j.molcel.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  17. Freeberg MA, Han T, Moresco JJ, Kong A, Yang YC, Lu ZJ, Yates JR, Kim JK (2013) Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol 14(2):R13. doi:10.1186/gb-2013-14-2-r13

    Article  PubMed Central  PubMed  Google Scholar 

  18. Yang Y, Umetsu J, Lu ZJ (2014) Global signatures of protein binding on structured RNAs in Saccharomyces cerevisiae. Sci China Life Sci 57(1):22–35. doi:10.1007/s11427-013-4583-0

    Article  CAS  PubMed  Google Scholar 

  19. Viollet S, Fuchs RT, Munafo DB, Zhuang F, Robb GB (2011) T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol 11:72. doi:10.1186/1472-6750-11-72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kern L, de Montigny J, Lacroute F, Jund R (1991) Regulation of the pyrimidine salvage pathway by the FUR1 gene product of Saccharomyces cerevisiae. Curr Genet 19(5):333–337

    Article  CAS  PubMed  Google Scholar 

  21. Munafo DB, Robb GB (2010) Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16(12):2537–2552. doi:10.1261/rna.2242610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institute of General Medical Sciences (NIGMS) R01GM088565 and the Pew Charitable Trusts. The authors thank Mallory Freeberg and Danny Yang for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Han, T., Kim, J.K. (2016). Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Experimental Procedures. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics