Skip to main content

Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Cellular functions are mostly defined by the dynamic interactions of proteins within macromolecular networks. Deciphering the composition of macromolecular complexes and their dynamic rearrangements is the key to getting a comprehensive picture of cellular behavior and to understanding biological systems. In the last decade, affinity purification coupled to mass spectrometry has emerged as a powerful tool to comprehensively study interaction networks and their assemblies. However, the study of these interactomes has been hampered by severe methodological limitations. In particular, the affinity purification of intact complexes from cell lysates suffers from protein and RNA degradation, loss of transient interactors, and poor overall yields. In this chapter, we describe a rapid single-step affinity purification method for the efficient isolation of dynamic macromolecular complexes. The technique employs cell lysis by cryo-milling, which ensures nondegraded starting material in the submicron range, and magnetic beads, which allow for dense antibody-conjugation and thus rapid complex isolation, while avoiding loss of transient interactions. The method is epitope tag-independent, and overcomes many of the previous limitations to produce large interactomes with almost no contamination. The protocol described here has been optimized for the yeast S. cerevisiae.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gavin A, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  2. Goh K-I, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–8690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204

    Article  CAS  PubMed  Google Scholar 

  4. Ho Y, Gruhler A, Heilbut A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  CAS  PubMed  Google Scholar 

  5. Gavin A, Aloy P, Grandi P et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  CAS  PubMed  Google Scholar 

  6. Krogan N, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  PubMed  Google Scholar 

  7. Costanzo MC, Hogan JD, Cusick ME et al (2000) The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 28:73–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546, 563–567

    Google Scholar 

  9. Grigoriev A (2003) On the number of protein-protein interactions in the yeast proteome. Nucleic Acids Res 31:4157–4161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Collins SR, Kemmeren P, Zhao X-C et al (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:439–450

    Article  CAS  PubMed  Google Scholar 

  11. Johnson ME, Hummer G (2011) Nonspecific binding limits the number of proteins in a cell and shapes their interaction networks. Proc Natl Acad Sci U S A 108:603–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Picotti P, Bodenmiller B, Mueller LN et al (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 38(4):795–806

    Article  Google Scholar 

  13. Oeffinger M (2012) Two steps forward-one step back: advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics 12(10):1591–1608

    Article  CAS  PubMed  Google Scholar 

  14. Cristea I, Williams R, Chait B, Rout M (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4:1933–1941

    Article  CAS  PubMed  Google Scholar 

  15. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  16. Oeffinger M, Wei KE, Rogers R et al (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4:951–956

    Article  CAS  PubMed  Google Scholar 

  17. Karlsson R, Jendeberg L, Nilsson B et al (1995) Direct and competitive kinetic analysis of the interaction between human IgG1 and a one domain analogue of protein A. J Immunol Methods 183:43–49

    Article  CAS  PubMed  Google Scholar 

  18. López-Ferrer D, Ramos-Fernández A, Martínez-Bartolomé S et al (2006) Quantitative proteomics using 16O/18O labeling and linear ion trap mass spectrometry. Proteomics 6(Suppl 1):S4–S11

    Article  PubMed  Google Scholar 

  19. Capelo JL, Carreira R, Diniz M et al (2009) Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal Chim Acta 650:151–159

    Article  CAS  PubMed  Google Scholar 

  20. Belozerov VE, Lin Z-Y, Gingras A-C et al (2012) High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol Cell Biol 32:3695–3706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Arike L, Peil L (2014) Spectral counting label-free proteomics. Methods Mol Biol 1156:213–222

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  23. Bondos SE, Bicknell A (2003) Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 316:223–231

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    Article  CAS  PubMed  Google Scholar 

  25. Damodaran S, Kinsella JE (1983) Dissociation of nucleoprotein complexes by chaotropic salts. FEBS Lett 158:53–57

    Article  CAS  PubMed  Google Scholar 

  26. Westermeier R, Naven T (2002) Proteomics in practice: laboratory manual of proteome analysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  27. Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17:1232–1239

    Article  CAS  PubMed  Google Scholar 

  28. Mellacheruvu D, Wright Z, Couzens AL et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10:730–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. OConnor CD, Hames BD (2008) Proteomics. Scion Publishing Limited, New Delhi

    Google Scholar 

  30. Dogruel D, Nelson RW, Williams P (1996) The effects of matrix pH and cation availability on the matrix-assisted laser desorption ionization mass spectrometry of poly(methyl methacrylate). Rapid Commun Mass Spectrom 10:801–804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Oeffinger lab for useful conversations and comments. We also thank Ms. Karen Wei for the development of the liquid N2 decanter depicted in Fig. 1. The Oeffinger laboratory is supported by the Canadian Institutes of Health Research (MOP 106628), the Natural Sciences and Engineering Council of Canada (RGPIN 386315), the Rachel Foundation, the Fonds de recherche Santé Québec, and the Canadian Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Oeffinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Trahan, C., Aguilar, LC., Oeffinger, M. (2016). Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae . In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics